📄 cvtrnsfm.cpp
字号:
/*----------------------------------------------------------------------------
_ _ _
/\ | | | (_)
/ \ _ __ __| |_ __ ___ _ __ ___ ___ __| |_ __ _
/ /\ \ | '_ \ / _` | '__/ _ \| '_ ` _ \ / _ \/ _` | |/ _` |
/ ____ \| | | | (_| | | | (_) | | | | | | __/ (_| | | (_| |
/_/ \_\_| |_|\__,_|_| \___/|_| |_| |_|\___|\__,_|_|\__,_|
The contents of this file are subject to the Andromedia Public
License Version 1.0 (the "License"); you may not use this file
except in compliance with the License. You may obtain a copy of
the License at http://www.andromedia.com/APL/
Software distributed under the License is distributed on an
"AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or
implied. See the License for the specific language governing
rights and limitations under the License.
The Original Code is Pueblo client code, released November 4, 1998.
The Initial Developer of the Original Code is Andromedia Incorporated.
Portions created by Andromedia are Copyright (C) 1998 Andromedia
Incorporated. All Rights Reserved.
Andromedia Incorporated 415.365.6700
818 Mission Street - 2nd Floor 415.365.6701 fax
San Francisco, CA 94103
Contributor(s):
--------------------------------------------------------------------------
Chaco team: Dan Greening, Glenn Crocker, Jim Doubek,
Coyote Lussier, Pritham Shetty.
Wrote and designed original codebase.
------------------------------------------------------------------------------
Implementation for the computation of transforms of a VRML QV tree
(currently assumes Intel 3DR.)
----------------------------------------------------------------------------*/
// $Header: /home/cvs/chaco/modules/client/msw/ChGraphx/CvTrnsfm.cpp,v 2.17 1996/06/27 03:44:18 jimd Exp $
#include "grheader.h"
//
#if defined( CH_ARCH_16 )
#include <QvElemnt.h>
#else
#include <QvElement.h>
#endif
#include <QvNodes.h>
#include <QvState.h>
#if defined( CH_ARCH_16 )
#include <UnknNode.h>
#else
#include <QvUnknownNode.h>
#endif
#ifdef CH_MSW
#include <windows.h>
#endif
#ifdef HUGE
#undef HUGE
#endif
#include <math.h>
#include <strstrea.h>
#include "ChMaze.h"
#include "CvTrnsfm.h"
#include "CvConvrt.h"
void GetTransform(QvMatrixTransform *pNode, GxTransformF_t& mat)
{
Qv2Native(pNode->matrix, mat);
}
void GetTransform(QvRotation *pNode, GxTransformF_t& mat)
{
RotationMatrix(pNode->rotation.axis[0],
pNode->rotation.axis[1],
pNode->rotation.axis[2],
pNode->rotation.angle,
mat);
}
void GetTransform(QvScale *pNode, GxTransformF_t& mat)
{
ScalingMatrix(pNode->scaleFactor.value[0],
pNode->scaleFactor.value[1],
pNode->scaleFactor.value[2],
mat);
}
void GetTransform(QvTransform *pNode, GxTransformF_t& mat)
{
/* The VRML 1.0 spec (5/26/95) states:
"The transform node
Transform {
translation T1
rotation R1
scaleFactor S
scaleOrientation R2
center T2
}
is equivalent to the sequence
Translation { translation T1 }
Translation { translation T2 }
Rotation { rotation R1 }
Rotation { rotation R2 }
Scale { scaleFactor S }
Rotation { rotation -R2 }
Translation { translation -T2 }"
*/
// We accumulate the matrix in mat by multiplying by each step. Note the
// use of mat and tmpMat alternates in each step.
GxTransformF_t stepMat, tmpMat;
// T1 => mat
TranslationMatrix (pNode->translation.value[0], pNode->translation.value[1], pNode->translation.value[2], mat );
// T2 => tmpMat
TranslationMatrix (pNode->center.value[0], pNode->center.value[1], pNode->center.value[2], stepMat );
ComposeMatrix(mat, stepMat, tmpMat);
// R1 => mat
RotationMatrix(pNode->rotation.axis[0],
pNode->rotation.axis[1],
pNode->rotation.axis[2],
pNode->rotation.angle,
stepMat);
ComposeMatrix(tmpMat, stepMat, mat);
// R2 => tmpMat
RotationMatrix(pNode->scaleOrientation.axis[0],
pNode->scaleOrientation.axis[1],
pNode->scaleOrientation.axis[2],
pNode->scaleOrientation.angle,
stepMat);
ComposeMatrix(mat, stepMat, tmpMat);
// S => mat
ScalingMatrix (pNode->scaleFactor.value[0], pNode->scaleFactor.value[1], pNode->scaleFactor.value[2], stepMat );
ComposeMatrix(tmpMat, stepMat, mat);
// -R2 => tmpMat
RotationMatrix(pNode->scaleOrientation.axis[0],
pNode->scaleOrientation.axis[1],
pNode->scaleOrientation.axis[2],
-pNode->scaleOrientation.angle,
stepMat);
ComposeMatrix(mat, stepMat, tmpMat);
// -T2 => mat
TranslationMatrix (-pNode->center.value[0], -pNode->center.value[1], -pNode->center.value[2], stepMat );
ComposeMatrix(tmpMat, stepMat, mat);
}
void GetTransform(QvTranslation *pNode, GxTransformF_t& mat)
{
TranslationMatrix(pNode->translation.value[0],
pNode->translation.value[1],
pNode->translation.value[2],
mat);
}
bool GetTransform(QvElement *elt, GxTransformF_t& eltMat)
{
bool boolHasMatrix;
switch(elt->type)
{
case QvElement::MatrixTransform:
{
GetTransform((QvMatrixTransform *)(elt->data), eltMat);
boolHasMatrix = true;
break;
}
case QvElement::Rotation:
{
GetTransform((QvRotation *)(elt->data), eltMat);
boolHasMatrix = true;
break;
}
case QvElement::Scale:
{
GetTransform((QvScale *)(elt->data), eltMat);
boolHasMatrix = true;
break;
}
case QvElement::Transform:
{
GetTransform((QvTransform *)(elt->data), eltMat);
boolHasMatrix = true;
break;
}
case QvElement::Translation:
{
GetTransform((QvTranslation *)(elt->data), eltMat);
boolHasMatrix = true;
break;
}
default:
{
boolHasMatrix = false;
break;
}
}
return boolHasMatrix;
}
void normalize(float &x, float &y, float &z)
{
float sum = x * x + y * y + z * z;
sum = sqrt(sum);
x /= sum; y /= sum; z /= sum;
}
void RotateMatrix( float angle, float x, float y, float z, GxTransformF_t mat)
{
#if defined(CH_USE_3DR)
float aBit = .001;
float eps = aBit;
if (fabs(x) < eps && fabs(z) < eps )
{
float sum, sum2;
x += aBit;
sum2 = x * x + y * y + z * z;
sum = sqrt(sum2);
x /= sum; y /= sum; z /= sum;
}
G3dRotateMatrix( angle, x, y, z, mat);
#else
float c = cos(angle);
float s = sin(angle);
float t = 1.0 - c;
//normalize(x, y, z); assume normalized
mat[0][0] = t * x * x + c;
mat[1][0] = t * x * y - s * z;
mat[2][0] = t * x * z + s * y;
mat[3][0] = 0.0;
mat[0][1] = t * x * y + s * z;
mat[1][1] = t * y * y + c;
mat[2][1] = t * y * z - s * x;
mat[3][1] = 0.0;
mat[0][2] = t * x * z - s * y;
mat[1][2] = t * y * z + s * x;
mat[2][2] = t * z * z + c;
mat[3][2] = 0.0;
mat[0][3] = 0.0;
mat[1][3] = 0.0;
mat[2][3] = 0.0;
mat[3][3] = 1.0;
#endif
}
void TranslationMatrix(float fX, float fY, float fZ, GxTransformF_t& mat)
{
GxTransform3Wf::IdentityMatrix(mat);
#if defined(CH_USE_3DR)
mat[0][3] = fX;
mat[1][3] = fY;
mat[2][3] = fZ;
#else
mat[3][0] = fX;
mat[3][1] = fY;
mat[3][2] = fZ;
#endif
}
void ScalingMatrix(float fX, float fY, float fZ, GxTransformF_t& mat)
{
GxTransform3Wf::IdentityMatrix(mat);
mat[0][0] = fX;
mat[1][1] = fY;
mat[2][2] = fZ;
}
void RotationMatrix(float fAxisX, float fAxisY, float fAxisZ, float fAngle, GxTransformF_t& mat)
{
// This takes into account the difference between vrml and 3dr's sense of rotation
GxVec3f axis;
axis.set( fAxisX, fAxisY, fAxisZ);
if (axis.dot(axis) < 1e-12)
{
axis.set( 0, 0, 1);
}
axis.normalize();
#if (defined(CH_USE_RLAB) || defined(CH_USE_D3D))
fAngle = -fAngle;
#endif
// for other renderers??? TODO
RotateMatrix(-fAngle,
axis.x(),
axis.y(),
axis.z(),
mat);
}
#if defined(CH_USE_3DR)
void TransformPoint( const PointFW_t &src, PointF_t &dst, GxTransformF_t& mat )
{
PointFW_t tmp;
PointF_t tmps;
CopyPoint(src, tmps);
G3dTransformPointF( &tmps, &tmp, mat );
CopyPoint(tmp, dst);
}
void TransformPoint( const PointFW_t &src, PointFW_t &dst, GxTransformF_t& mat )
{
PointF_t tmps;
CopyPoint(src, tmps);
G3dTransformPointF( &tmps, &dst, mat );
}
void TransformPoint( const PointF_t &src, PointF_t &dst, GxTransformF_t& mat )
{
PointFW_t tmp;
G3dTransformPointF( (PointF_t*)&src, &tmp, mat );
CopyPoint(tmp, dst);
}
void TransformPoint( const PointF_t &src, PointFW_t &dst, GxTransformF_t& mat )
{
G3dTransformPointF( (PointF_t*)&src, &dst, mat );
}
#endif // defined(CH_USE_3DR)
void AccumQVTransform( QvState * qvState, GxTransformF_t& mat)
{
QvElement * top = qvState->getTopElement(QvState::TransformationIndex);
QvElement * elt;
GxTransformF_t eltMat, tmpMat;
bool boolHasMatrix;
GxTransform3Wf::IdentityMatrix(mat);
for( elt = top; elt; elt = elt->next )
{
boolHasMatrix = GetTransform(elt, eltMat);
if(boolHasMatrix)
{
ComposeMatrix(eltMat, mat, tmpMat); // premult because of inside out order
#if ( _MSC_VER == 900 )
GxTransform3Wf::CopyMatrix( tmpMat, mat); // walking down stack
#else
GxTransform3Wf::CopyMatrix((const float(*)[4])tmpMat, mat); // walking down stack
#endif
}
}
}
#if 0
// Obsolete ??
void ComputeCameraOrientation( float pan, float tilt, float &axisX, float &axisY, float &axisZ, float &angle );
void ComputePanAndTilt( float &pan, float &tilt, float axisX, float axisY, float axisZ, float angle );
// Based on pan and tilt, compute the transform for vrml
void ComputeCameraOrientation( float pan, float tilt, float &axisX, float &axisY, float &axisZ, float &angle )
{
PointF_t dir, axis;
PointF_t dirZ = {0.0f, 0.0f, -1.0f};
PointFW_t tmp;
GxTransformF_t mat;
RotationMatrix(1, 0, 0, tilt, mat);
G3dTransformPointF( &dirZ, &tmp, mat );
CopyPoint(tmp, dir);
RotationMatrix(0, 1, 0, pan, mat);
G3dTransformPointF( &dir, &tmp, mat );
CopyPoint(tmp, dir);
G3dCross(&dirZ, &dir, &axis);
if (G3dDot(&axis, &axis) < 1e-12)
{
axis.x = 0; axis.y = 1; axis.z = 0;
}
G3dUnitVector(&axis);
float cosa = G3dDot(&dirZ, &dir); // both were unit vectors before
angle = acos(cosa);
axisX = axis.x;
axisY = axis.y;
axisZ = axis.z;
}
#if !defined(PI)
#define PI 3.1415927
#endif
// Based on transform for vrml, compute the pan and tilt
void ComputePanAndTilt( float &pan, float &tilt, float axisX, float axisY, float axisZ, float angle )
{
PointF_t dir;
PointF_t dirZ = {0.0f, 0.0f, -1.0f};
PointF_t dirY = {0.0f, 1.0f, 0.0f};
PointFW_t tmp;
GxTransformF_t mat;
RotationMatrix(axisX,
axisY,
axisZ,
angle,
mat);
G3dTransformPointF( &dirZ, &tmp, mat );
CopyPoint(tmp, dir);
tilt = asin(dir.y);
if (fabs(tilt) < 1e-2) tilt = 0; // make up for round off creep
if( fabs(1. - fabs(dir.y)) > 1e-4)
{
pan = atan2( dir.x, dir.z ) + PI;
if(pan > PI) pan -= PI + PI;
}
else
{
pan = atan2( -axisZ, axisX ) + PI;
if(pan > PI) pan -= PI + PI;
}
}
#endif
// end of file
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -