⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 bin_tree.h

📁 高效数据类型和算法库
💻 H
字号:
/*******************************************************************************++  LEDA-R  3.2.3++  bin_tree.h++  Copyright (c) 1995  by  Max-Planck-Institut fuer Informatik+  Im Stadtwald, 66123 Saarbruecken, Germany     +  All rights reserved.+ *******************************************************************************/#ifndef LEDA_BIN_TREE_H#define LEDA_BIN_TREE_H//------------------------------------------------------------------------------//// bin_tree  ////     base class for all leaf oriented binary trees in LEDA//// Stefan N"aher (1993)////------------------------------------------------------------------------------#include <LEDA/basic.h> class bin_tree;class bin_tree_node;typedef bin_tree_node* bin_tree_item;typedef void (*DRAW_BIN_NODE_FCT)(double,double,void*,int);typedef void (*DRAW_BIN_EDGE_FCT)(double,double,double,double);//------------------------------------------------------------------------------// class bin_tree_node //------------------------------------------------------------------------------class bin_tree_node{     friend class bin_tree;   friend class avl_tree;   friend class bb_tree;   friend class rb_tree;   friend class rs_tree;   GenPtr   k;              // key   GenPtr   i;              // info   bin_tree_node* child[2]; // node: left and right child                            // leaf: successor and predecessor   bin_tree_node* parent;   // pointer to parent   bin_tree_node* corr;     // leaf: pointer to corresponding inner node                            // node: nil   int   bal;               // rebalancing data /*   public:*/   bin_tree_node(GenPtr key, GenPtr inf, int b)   { k = key;     i = inf;      bal = b;    }            bin_tree_node() { }            bin_tree_node(bin_tree_node* p)   { k = p->k;     i = p->i ;     bal = p->bal;    }            bool is_node()   { return (corr == nil);  }   bool is_leaf()   { return (corr != nil); }   void set_bal(int x) { bal = x; }   int  get_bal()      { return bal; }   LEDA_MEMORY(bin_tree_node)}; //------------------------------------------------------------------------------// class bin_tree//------------------------------------------------------------------------------class bin_tree{   protected:  enum { left=0, right=1 };  bin_tree_node ROOT;       // "super root" to avoid special cases in rotations                            // ROOT.child[left] points to real root node                            // ROOT.child[right] points to leftmost leaf  int count;              // functions depending on used rebalancing method  // will be defined in derived classes (rb_tree, avl_tree, ...)  virtual int leaf_balance() { return 0; }  // default balance value for leaves  virtual int node_balance() { return 0; }  // inner nodes  virtual int root_balance() { return 0; }  // root node  virtual void insert_rebal(bin_tree_node*)   {}  virtual void del_rebal(bin_tree_node*, bin_tree_node*) {}  // other protected member functions  bin_tree_node*& min_ptr() const                            { return (bin_tree_node*&)ROOT.child[right];}  void rotation(bin_tree_node*, bin_tree_node*, int);  void double_rotation(bin_tree_node*, bin_tree_node*, bin_tree_node*, int);  void del_tree(bin_tree_node*);  bin_tree_node* int_search(GenPtr) const;  bin_tree_node* search(GenPtr) const;  bin_tree_node* copy_tree(bin_tree_node*,bin_tree_item&) const;  // functions depending on actual key type  // will be defined in dictionary and sortseq templates  virtual int cmp(GenPtr x, GenPtr y) const { return compare(x,y); }  virtual void clear_key(GenPtr&) const { }  virtual void clear_inf(GenPtr&) const { }  virtual void clear_iinf(GenPtr&)const { }  virtual void copy_key(GenPtr&)  const { }  virtual void copy_inf(GenPtr&)  const { }  virtual void print_key(GenPtr)  const { }  virtual void print_inf(GenPtr)  const { }  virtual int  int_type() const { return 0; }  //bin_tree_node* item(void* p) const { return (bin_tree_node*)p; }public:  bin_tree_node* item(void* p) const { return (bin_tree_node*)p; }  bin_tree_node*& root() const                            { return (bin_tree_node*&)ROOT.child[left]; }  bin_tree_node* cyclic_succ(bin_tree_node* p) const { return p->child[right]; }  bin_tree_node* cyclic_pred(bin_tree_node* p) const { return p->child[left]; }  bin_tree_node* succ(bin_tree_node* p) const  { return (p->child[right] == min_ptr()) ? 0 : p->child[right]; }  bin_tree_node* pred(bin_tree_node* p) const  { return (p == min_ptr())  ?  0 : p->child[left] ; }  bin_tree_node* first_item()  const               { return min_ptr(); }  bin_tree_node* next_item(bin_tree_node* p) const { return succ(p); }  bin_tree_node* min() const { return min_ptr(); }  bin_tree_node* max() const { return (count>0) ? min_ptr()->child[left] : 0; }  bin_tree& conc(bin_tree&);  void split_at_item(bin_tree_node*,bin_tree&,bin_tree&);  void reverse_items(bin_tree_node*,bin_tree_node*);  bin_tree_node* insert(GenPtr,GenPtr,GenPtr=0);  bin_tree_node* insert_at_item(bin_tree_node*,GenPtr,GenPtr,GenPtr=0);  bin_tree_node* lookup(GenPtr) const;  bin_tree_node* locate(GenPtr) const;  bin_tree_node* locate_succ(GenPtr) const;   bin_tree_node* locate_pred(GenPtr) const;   GenPtr   key(bin_tree_node* p)  const { return  p->k; }  GenPtr   inf(bin_tree_node* p)  const { return  p->i; }  GenPtr&  info(bin_tree_node* p) const { return  p->i; }  void del(GenPtr);  void del_item(bin_tree_node* p);  void change_inf(bin_tree_node*,GenPtr);  void clear();  int size()   const { return count; }   int empty()  const { return root() ? false : true ; }  // construction, assignment, destruction  bin_tree() {  count = 0; root() = nil; min_ptr() = nil; }  bin_tree(const bin_tree&);  bin_tree& operator=(const bin_tree&);  virtual ~bin_tree() { clear(); }  // additional operations used by range and segment trees  virtual void propagate_modification(int, GenPtr, GenPtr) {}  bin_tree_node* l_child(bin_tree_node* p) const  { return p->is_leaf() ? 0 : p->child[left]; }  bin_tree_node* r_child(bin_tree_node* p) const  { return p->is_leaf() ? 0 : p->child[right]; }  int is_inner(bin_tree_node* p)  const  { return p->corr == 0; }  bin_tree_node* parent(bin_tree_node* p)  const  { return (p==root()) ? 0 : p->parent; }  // miscellaneous  void draw(DRAW_BIN_NODE_FCT, DRAW_BIN_NODE_FCT, DRAW_BIN_EDGE_FCT,             bin_tree_node*, double, double, double, double, double);  void draw(DRAW_BIN_NODE_FCT, DRAW_BIN_NODE_FCT, DRAW_BIN_EDGE_FCT,             double, double, double, double);  void print() const;  void print_tree(bin_tree_node*,int) const;};inline void bin_tree::rotation(bin_tree_node* p,bin_tree_node* q, int dir){ bin_tree_node* r = q->child[1-dir];  bin_tree_node* x = p->parent;  p->child[dir] = r;  q->child[1-dir] = p;  p->parent = q;  r->parent = p;  if (p == x->child[left])     x->child[left] = q;  else     x->child[right] = q;  q->parent = x;  propagate_modification(4,p,r);  propagate_modification(5,q,p);  if( x!=&ROOT )    propagate_modification(6,x,q); }inline void bin_tree::double_rotation(bin_tree_node* p, bin_tree_node* q,                                       bin_tree_node* r, int dir1){ int dir2 = 1-dir1;  bin_tree_node* s = r->child[dir1];  bin_tree_node* t = r->child[dir2];  bin_tree_node* x = p->parent;  p->child[dir1] = t;  q->child[dir2] = s;  r->child[dir1] = q;  r->child[dir2] = p;  p->parent = r;  q->parent = r;  s->parent = q;  t->parent = p;  if (p == x->child[left])     x->child[left] = r;  else     x->child[right] = r;  r->parent = x;  propagate_modification(7,p,t);  propagate_modification(8,q,s);  propagate_modification(9,r,p);  propagate_modification(10,r,q);  if( x!=&ROOT )    propagate_modification(11,x,r);}#if !defined(__TEMPLATE_FUNCTIONS)// dummy I/O and cmp functionsinline void Print(const bin_tree&,ostream&) { }inline void Read(bin_tree&, istream&) { }inline int  compare(const bin_tree&,const bin_tree&) { return 0; }#endif#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -