📄 mapmasin.c
字号:
/* * M_APM - mapmasin.c * * Copyright (C) 1999 Michael C. Ring * * Permission to use, copy, and distribute this software and its * documentation for any purpose with or without fee is hereby granted, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. * * Permission to modify the software is granted, but not the right to * distribute the modified code. Modifications are to be distributed * as patches to released version. * * This software is provided "as is" without express or implied warranty. *//* * $Id: mapmasin.c,v 1.13 1999/09/21 21:00:33 mike Exp $ * * This file contains the 'ARC' family of functions; ARC-SIN, ARC-COS, * ARC-TAN, and ARC-TAN2. * * $Log: mapmasin.c,v $ * Revision 1.13 1999/09/21 21:00:33 mike * make sure the sign of 'sin' from M_cos_to_sin is non-zero * before assigning it from the original angle. * * Revision 1.12 1999/07/21 03:05:06 mike * added some comments * * Revision 1.11 1999/07/19 02:33:39 mike * reset local precision again * * Revision 1.10 1999/07/19 02:18:05 mike * more fine tuning of local precision * * Revision 1.9 1999/07/19 00:08:34 mike * adjust local precision during iterative loops * * Revision 1.8 1999/07/18 22:35:56 mike * make arc-sin and arc-cos use dynamically changing * precision to speed up iterative routines for large N * * Revision 1.7 1999/07/09 22:52:00 mike * skip limit PI check when not needed * * Revision 1.6 1999/07/09 00:10:39 mike * use better method for arc sin and arc cos * * Revision 1.5 1999/07/08 22:56:20 mike * replace local MAPM constant with a global * * Revision 1.4 1999/06/20 16:55:01 mike * changed local static variables to MAPM stack variables * * Revision 1.3 1999/05/15 02:10:27 mike * add check for number of decimal places * * Revision 1.2 1999/05/10 21:10:21 mike * added some comments * * Revision 1.1 1999/05/10 20:56:31 mike * Initial revision */#include "m_apm_lc.h"/****************************************************************************/void m_apm_arctan2(rr,places,yy,xx)M_APM rr, yy, xx;int places;{M_APM tmp5, tmp6, tmp7;int ix, iy;tmp5 = M_get_stack_var();tmp6 = M_get_stack_var();tmp7 = M_get_stack_var();iy = yy->m_apm_sign;ix = xx->m_apm_sign;if (ix == 0) /* x == 0 */ { if (iy == 0) /* y == 0 */ { fprintf(stderr,"Warning! ... \'m_apm_arctan2\', Both Arguments == 0\n"); rr->m_apm_datalength = 1; rr->m_apm_sign = 0; rr->m_apm_exponent = 0; rr->m_apm_data[0] = 0; goto ATAN2_DONE; } M_check_dec_places(M_ATAN2, places); if (iy == 1) { m_apm_round(rr, places, MM_HALF_PI); goto ATAN2_DONE; } else { m_apm_round(rr, places, MM_HALF_PI); rr->m_apm_sign = -1; goto ATAN2_DONE; } }if (iy == 0) { if (ix == 1) { rr->m_apm_datalength = 1; rr->m_apm_sign = 0; rr->m_apm_exponent = 0; rr->m_apm_data[0] = 0; } else { M_check_dec_places(M_ATAN2, places); m_apm_round(rr, places, MM_PI); } goto ATAN2_DONE; }/* * the special cases have been handled, now do the real work */m_apm_divide(tmp6, (places + 4), yy, xx);m_apm_arctan(tmp5, (places + 4), tmp6);if (ix == 1) /* 'x' is positive */ { m_apm_round(rr, places, tmp5); }else /* 'x' is negative */ { M_check_dec_places(M_ATAN2, places); if (iy == 1) /* 'y' is positive */ { m_apm_add(tmp7, tmp5, MM_PI); m_apm_round(rr, places, tmp7); } else /* 'y' is negative */ { m_apm_subtract(tmp7, tmp5, MM_PI); m_apm_round(rr, places, tmp7); } }ATAN2_DONE:M_restore_stack(3);}/****************************************************************************//* Calculate arctan using the identity : x arctan (x) == arcsin [ --------------- ] sqrt(1 + x^2)*/void m_apm_arctan(rr,places,xx)M_APM rr, xx;int places;{M_APM tmp8, tmp9;tmp8 = M_get_stack_var();tmp9 = M_get_stack_var();m_apm_multiply(tmp9, xx, xx);m_apm_add(tmp8, tmp9, MM_One);m_apm_sqrt(tmp9, (places + 4), tmp8);m_apm_divide(tmp8, (places + 4), xx, tmp9);m_apm_arcsin(rr, places, tmp8);M_restore_stack(2);}/****************************************************************************/void m_apm_arcsin(r,places,x)M_APM r, x;int places;{M_APM tmp0, tmp1, tmp2, tmp3, current_x;int ii, maxp, tolerance, local_precision;char sbuf[64];current_x = M_get_stack_var();tmp0 = M_get_stack_var();tmp1 = M_get_stack_var();tmp2 = M_get_stack_var();tmp3 = M_get_stack_var();m_apm_absolute_value(tmp0, x);ii = m_apm_compare(tmp0, MM_One);if (ii == 1) /* |x| > 1 */ { fprintf(stderr,"Warning! ... \'m_apm_arcsin\', |Argument| > 1\n"); r->m_apm_datalength = 1; r->m_apm_sign = 0; r->m_apm_exponent = 0; r->m_apm_data[0] = 0; M_restore_stack(5); return; }if (ii == 0) /* |x| == 1, arcsin = +/- PI / 2 */ { M_check_dec_places(M_ASIN, places); m_apm_round(r, places, MM_HALF_PI); r->m_apm_sign = x->m_apm_sign; M_restore_stack(5); return; }if (m_apm_compare(tmp0, MM_0_85) == 1) /* check if > 0.85 */ { M_cos_to_sin(tmp2, (places + 4), x); m_apm_arccos(r, places, tmp2); r->m_apm_sign = x->m_apm_sign; M_restore_stack(5); return; }tolerance = -(places + 2);maxp = places + 4 - x->m_apm_exponent;local_precision = 25 - x->m_apm_exponent;M_get_asin_guess(current_x, x);/* Use the following iteration to solve for arc-sin : sin(X) - N X = X - ------------ n+1 cos(X)*/ii = 0;while (TRUE) { MM_skip_limit_PI_check = TRUE; m_apm_cos(tmp1, local_precision, current_x); MM_skip_limit_PI_check = FALSE; M_cos_to_sin(tmp2, local_precision, tmp1); if (tmp2->m_apm_sign != 0) tmp2->m_apm_sign = current_x->m_apm_sign; m_apm_subtract(tmp3, tmp2, x); m_apm_divide(tmp0, local_precision, tmp3, tmp1); m_apm_subtract(tmp2, current_x, tmp0); m_apm_copy(current_x, tmp2); if (ii != 0) { if ((tmp0->m_apm_exponent < tolerance) || (tmp0->m_apm_sign == 0)) break; } /* * checking for ii == 16 should be valid up to ~420,000 digits. * if more digits are needed, increase accordingly. note that * each iteration approx doubles the number of digits obtained. * * ii == 17 should be large enough to calculate ~840,000 digits * ii == 18 ~1,680,000 digits * etc */ if (++ii == 16) { fprintf(stderr, "Warning! ... \'m_apm_arcsin\', max iteration count reached\n"); m_apm_absolute_value(tmp1, tmp0); m_apm_to_string(sbuf, 4, tmp1); fprintf(stderr,"arc-sin solution accurate to %s \n",sbuf); break; } local_precision += 2 - 2 * tmp0->m_apm_exponent; if (local_precision > maxp) local_precision = maxp; }m_apm_round(r, places, current_x);M_restore_stack(5);}/****************************************************************************/void m_apm_arccos(r,places,x)M_APM r, x;int places;{M_APM tmp0, tmp1, tmp2, tmp3, current_x;int ii, maxp, tolerance, local_precision;char sbuf[64];current_x = M_get_stack_var();tmp0 = M_get_stack_var();tmp1 = M_get_stack_var();tmp2 = M_get_stack_var();tmp3 = M_get_stack_var();m_apm_absolute_value(tmp0, x);ii = m_apm_compare(tmp0, MM_One);if (ii == 1) /* |x| > 1 */ { fprintf(stderr,"Warning! ... \'m_apm_arccos\', |Argument| > 1\n"); r->m_apm_datalength = 1; r->m_apm_sign = 0; r->m_apm_exponent = 0; r->m_apm_data[0] = 0; M_restore_stack(5); return; }if (ii == 0) /* |x| == 1, arccos = 0, PI */ { if (x->m_apm_sign == 1) { r->m_apm_datalength = 1; r->m_apm_sign = 0; r->m_apm_exponent = 0; r->m_apm_data[0] = 0; } else { M_check_dec_places(M_ACOS, places); m_apm_round(r, places, MM_PI); } M_restore_stack(5); return; }if (m_apm_compare(tmp0, MM_0_85) == 1) /* check if > 0.85 */ { M_cos_to_sin(tmp2, (places + 4), x); if (x->m_apm_sign == 1) { m_apm_arcsin(r, places, tmp2); } else { M_check_dec_places(M_ACOS, places); m_apm_arcsin(tmp3, (places + 4), tmp2); m_apm_subtract(tmp1, MM_PI, tmp3); m_apm_round(r, places, tmp1); } M_restore_stack(5); return; }tolerance = -(places + 2);maxp = places + 4;local_precision = 25;M_get_acos_guess(current_x, x);/* Use the following iteration to solve for arc-cos : cos(X) - N X = X + ------------ n+1 sin(X)*/ii = 0;while (TRUE) { MM_skip_limit_PI_check = TRUE; m_apm_cos(tmp1, local_precision, current_x); MM_skip_limit_PI_check = FALSE; M_cos_to_sin(tmp2, local_precision, tmp1); if (tmp2->m_apm_sign != 0) tmp2->m_apm_sign = current_x->m_apm_sign; m_apm_subtract(tmp3, tmp1, x); m_apm_divide(tmp0, local_precision, tmp3, tmp2); m_apm_add(tmp2, current_x, tmp0); m_apm_copy(current_x, tmp2); if (ii != 0) { if ((tmp0->m_apm_exponent < tolerance) || (tmp0->m_apm_sign == 0)) break; } /* * checking for ii == 16 should be valid up to ~420,000 digits. * if more digits are needed, increase accordingly. note that * each iteration approx doubles the number of digits obtained. * * ii == 17 should be large enough to calculate ~840,000 digits * ii == 18 ~1,680,000 digits * etc */ if (++ii == 16) { fprintf(stderr, "Warning! ... \'m_apm_arccos\', max iteration count reached\n"); m_apm_absolute_value(tmp1, tmp0); m_apm_to_string(sbuf, 4, tmp1); fprintf(stderr,"arc-cos solution accurate to %s \n",sbuf); break; } local_precision += 2 - 2 * tmp0->m_apm_exponent; if (local_precision > maxp) local_precision = maxp; }m_apm_round(r, places, current_x);M_restore_stack(5);}/****************************************************************************/
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -