⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 blocksort.c

📁 高效率的一种通用压缩/解压程序
💻 C
📖 第 1 页 / 共 2 页
字号:
/*-------------------------------------------------------------*//*--- Block sorting machinery                               ---*//*---                                           blocksort.c ---*//*-------------------------------------------------------------*//*--  This file is a part of bzip2 and/or libbzip2, a program and  library for lossless, block-sorting data compression.  Copyright (C) 1996-1998 Julian R Seward.  All rights reserved.  Redistribution and use in source and binary forms, with or without  modification, are permitted provided that the following conditions  are met:  1. Redistributions of source code must retain the above copyright     notice, this list of conditions and the following disclaimer.  2. The origin of this software must not be misrepresented; you must      not claim that you wrote the original software.  If you use this      software in a product, an acknowledgment in the product      documentation would be appreciated but is not required.  3. Altered source versions must be plainly marked as such, and must     not be misrepresented as being the original software.  4. The name of the author may not be used to endorse or promote      products derived from this software without specific prior written      permission.  THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS  OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED  WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE  ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY  DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL  DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE  GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,  WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING  NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS  SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.  Julian Seward, Guildford, Surrey, UK.  jseward@acm.org  bzip2/libbzip2 version 0.9.0c of 18 October 1998  This program is based on (at least) the work of:     Mike Burrows     David Wheeler     Peter Fenwick     Alistair Moffat     Radford Neal     Ian H. Witten     Robert Sedgewick     Jon L. Bentley  For more information on these sources, see the manual.--*/#include "bzlib_private.h"/*---------------------------------------------*//*--  Compare two strings in block.  We assume (see  discussion above) that i1 and i2 have a max  offset of 10 on entry, and that the first  bytes of both block and quadrant have been  copied into the "overshoot area", ie  into the subscript range  [nblock .. nblock+NUM_OVERSHOOT_BYTES-1].--*/static __inline__ Bool fullGtU ( UChar*  block,                                 UInt16* quadrant,                                 UInt32  nblock,                                 Int32*  workDone,                                  Int32   i1,                                  Int32   i2                               ){   Int32 k;   UChar c1, c2;   UInt16 s1, s2;   AssertD ( i1 != i2, "fullGtU(1)" );   c1 = block[i1];   c2 = block[i2];   if (c1 != c2) return (c1 > c2);   i1++; i2++;   c1 = block[i1];   c2 = block[i2];   if (c1 != c2) return (c1 > c2);   i1++; i2++;   c1 = block[i1];   c2 = block[i2];   if (c1 != c2) return (c1 > c2);   i1++; i2++;   c1 = block[i1];   c2 = block[i2];   if (c1 != c2) return (c1 > c2);   i1++; i2++;   c1 = block[i1];   c2 = block[i2];   if (c1 != c2) return (c1 > c2);   i1++; i2++;   c1 = block[i1];   c2 = block[i2];   if (c1 != c2) return (c1 > c2);   i1++; i2++;   k = nblock;   do {      c1 = block[i1];      c2 = block[i2];      if (c1 != c2) return (c1 > c2);      s1 = quadrant[i1];      s2 = quadrant[i2];      if (s1 != s2) return (s1 > s2);      i1++; i2++;      c1 = block[i1];      c2 = block[i2];      if (c1 != c2) return (c1 > c2);      s1 = quadrant[i1];      s2 = quadrant[i2];      if (s1 != s2) return (s1 > s2);      i1++; i2++;      c1 = block[i1];      c2 = block[i2];      if (c1 != c2) return (c1 > c2);      s1 = quadrant[i1];      s2 = quadrant[i2];      if (s1 != s2) return (s1 > s2);      i1++; i2++;      c1 = block[i1];      c2 = block[i2];      if (c1 != c2) return (c1 > c2);      s1 = quadrant[i1];      s2 = quadrant[i2];      if (s1 != s2) return (s1 > s2);      i1++; i2++;      if (i1 >= nblock) i1 -= nblock;      if (i2 >= nblock) i2 -= nblock;      k -= 4;      (*workDone)++;   }      while (k >= 0);   return False;}/*---------------------------------------------*//*--   Knuth's increments seem to work better   than Incerpi-Sedgewick here.  Possibly   because the number of elems to sort is   usually small, typically <= 20.--*/static Int32 incs[14] = { 1, 4, 13, 40, 121, 364, 1093, 3280,                          9841, 29524, 88573, 265720,                          797161, 2391484 };static void simpleSort ( EState* s, Int32 lo, Int32 hi, Int32 d ){   Int32 i, j, h, bigN, hp;   Int32 v;   UChar*  block        = s->block;   UInt32* zptr         = s->zptr;   UInt16* quadrant     = s->quadrant;   Int32*  workDone     = &(s->workDone);   Int32   nblock       = s->nblock;   Int32   workLimit    = s->workLimit;   Bool    firstAttempt = s->firstAttempt;   bigN = hi - lo + 1;   if (bigN < 2) return;   hp = 0;   while (incs[hp] < bigN) hp++;   hp--;   for (; hp >= 0; hp--) {      h = incs[hp];      i = lo + h;      while (True) {         /*-- copy 1 --*/         if (i > hi) break;         v = zptr[i];         j = i;         while ( fullGtU ( block, quadrant, nblock, workDone,                           zptr[j-h]+d, v+d ) ) {            zptr[j] = zptr[j-h];            j = j - h;            if (j <= (lo + h - 1)) break;         }         zptr[j] = v;         i++;         /*-- copy 2 --*/         if (i > hi) break;         v = zptr[i];         j = i;         while ( fullGtU ( block, quadrant, nblock, workDone,                 zptr[j-h]+d, v+d ) ) {            zptr[j] = zptr[j-h];            j = j - h;            if (j <= (lo + h - 1)) break;         }         zptr[j] = v;         i++;         /*-- copy 3 --*/         if (i > hi) break;         v = zptr[i];         j = i;         while ( fullGtU ( block, quadrant, nblock, workDone,                           zptr[j-h]+d, v+d ) ) {            zptr[j] = zptr[j-h];            j = j - h;            if (j <= (lo + h - 1)) break;         }         zptr[j] = v;         i++;         if (*workDone > workLimit && firstAttempt) return;      }   }}/*---------------------------------------------*//*--   The following is an implementation of   an elegant 3-way quicksort for strings,   described in a paper "Fast Algorithms for   Sorting and Searching Strings", by Robert   Sedgewick and Jon L. Bentley.--*/#define swap(lv1, lv2) \   { Int32 tmp = lv1; lv1 = lv2; lv2 = tmp; }static void vswap ( UInt32* zptr, Int32 p1, Int32 p2, Int32 n ){   while (n > 0) {      swap(zptr[p1], zptr[p2]);      p1++; p2++; n--;   }}static UChar med3 ( UChar a, UChar b, UChar c ){   UChar t;   if (a > b) { t = a; a = b; b = t; };   if (b > c) { t = b; b = c; c = t; };   if (a > b)          b = a;   return b;}#define min(a,b) ((a) < (b)) ? (a) : (b)typedef   struct { Int32 ll; Int32 hh; Int32 dd; }   StackElem;#define push(lz,hz,dz) { stack[sp].ll = lz; \                         stack[sp].hh = hz; \                         stack[sp].dd = dz; \                         sp++; }#define pop(lz,hz,dz) { sp--;               \                        lz = stack[sp].ll;  \                        hz = stack[sp].hh;  \                        dz = stack[sp].dd; }#define SMALL_THRESH 20#define DEPTH_THRESH 10/*--   If you are ever unlucky/improbable enough   to get a stack overflow whilst sorting,   increase the following constant and try   again.  In practice I have never seen the   stack go above 27 elems, so the following   limit seems very generous.--*/#define QSORT_STACK_SIZE 1000static void qSort3 ( EState* s, Int32 loSt, Int32 hiSt, Int32 dSt ){   Int32 unLo, unHi, ltLo, gtHi, med, n, m;   Int32 sp, lo, hi, d;   StackElem stack[QSORT_STACK_SIZE];   UChar*  block        = s->block;   UInt32* zptr         = s->zptr;   Int32*  workDone     = &(s->workDone);   Int32   workLimit    = s->workLimit;   Bool    firstAttempt = s->firstAttempt;   sp = 0;   push ( loSt, hiSt, dSt );   while (sp > 0) {      AssertH ( sp < QSORT_STACK_SIZE, 1001 );      pop ( lo, hi, d );      if (hi - lo < SMALL_THRESH || d > DEPTH_THRESH) {         simpleSort ( s, lo, hi, d );         if (*workDone > workLimit && firstAttempt) return;         continue;      }      med = med3 ( block[zptr[ lo         ]+d],                   block[zptr[ hi         ]+d],                   block[zptr[ (lo+hi)>>1 ]+d] );      unLo = ltLo = lo;      unHi = gtHi = hi;      while (True) {         while (True) {            if (unLo > unHi) break;            n = ((Int32)block[zptr[unLo]+d]) - med;            if (n == 0) { swap(zptr[unLo], zptr[ltLo]); ltLo++; unLo++; continue; };            if (n >  0) break;            unLo++;         }         while (True) {            if (unLo > unHi) break;            n = ((Int32)block[zptr[unHi]+d]) - med;            if (n == 0) { swap(zptr[unHi], zptr[gtHi]); gtHi--; unHi--; continue; };            if (n <  0) break;            unHi--;         }         if (unLo > unHi) break;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -