📄 draft-vixie-icp-htcp-01.txt
字号:
ICP Working Group Paul Vixie INTERNET-DRAFT Vixie Enterprises <draft-vixie-icp-htcp-01.txt> February, 1998 Hyper Text Caching Protocol (HTCP/0.0) Status of this Memo This document is an Internet-Draft. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts. Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as ``work in progress.'' To learn the current status of any Internet-Draft, please check the ``1id-abstracts.txt'' listing contained in the Internet-Drafts Shadow Directories on ftp.is.co.za (Africa), nic.nordu.net (Europe), munnari.oz.au (Pacific Rim), ds.internic.net (US East Coast), or ftp.isi.edu (US West Coast). Abstract This draft describes HTCP, a protocol for discovering HTTP caches and cached data, managing sets of HTTP caches, and monitoring cache activity. 1 - Definitions, Rationale and Scope 1.1. HTTP (see [RFC2068]) permits the transfer of web objects from ``origin servers'', possibly via ``proxies'' (which are allowed under some circumstances to ``cache'' such objects for subsequent reuse) to ``clients'' which consume the object in some way, usually by displaying it as part of a ``web page.'' HTTP/1.0 and later permit ``headers'' to be included in a request and/or a response, thus expanding upon the HTTP/0.9 (and earlier) behaviour of specifying only a URL in the request and offering only a body in the response. Expires August 1998 [Page 1] INTERNET-DRAFT HTCP February 1998 1.2. ICP (see [RFC2186]) permits caches to be queried as to their content, usually by other caches who are hoping to avoid an expensive fetch from a distant origin server. ICP was designed with HTTP/0.9 in mind, such that only the URL (without any headers) is used when describing cached content, and the possibility of multiple compatible bodies for the same URL had not yet been imagined. 1.3. This document specifies a Hyper Text Caching Protocol (HTCP or simply HoT CraP) which permits full request and response headers to be used in cache management, and expands the domain of cache management to include monitoring a remote cache's additions and deletions, requesting immediate deletions, and sending hints about web objects such as the third party locations of cacheable objects or the measured uncacheability or unavailability of web objects. 2 - HTTP Protocol 2.1. All multi-octet HTCP protocol elements are transmitted in network byte order. All RESERVED fields should be set to binary zero by senders and left unexamined by receivers. Headers must be presented with the CRLF line termination, as in HTTP. Any hostnames specified should be compatible between sender and receiver, such that if a private naming scheme (such as HOSTS.TXT or NIS) is in use, names depending on such schemes will only be sent to HTCP neighbors who are known to participate in said schemes. Raw addresses (dotted quad IPv4, or colon-format IPv6) addresses are universal, as are public DNS names. Use of private names or addresses will require special operational care. 2.2. UDP must be supported. HTCP agents must not be isolated from NETWORK failures and delays. An HTCP agent should be prepared to act in useful ways when no response is forthcoming, or when responses are delayed or reordered or damaged. TCP is optional and is expected to be used only for protocol debugging. 2.3. An HTCP Message has the following general format: +---------------------+ | HEADER | tells message length and protocol versions +---------------------+ | DATA | HTCP message (varies per major version number) +---------------------+ | AUTH | optional authentication for transaction +---------------------+ Expires August 1998 [Page 2] INTERNET-DRAFT HTCP February 1998 2.4. An HTCP/*.* HEADER has the following format: +0 (MSB) +1 (LSB) +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ 0: | LENGTH | +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ 2: | MAJOR | MINOR | +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LENGTH is the message length, inclusive of all header and data octets, including the LENGTH field itself. This field will be equal to the UDP payload size (``record length''), and can include padding, i.e., not all octets of the message need be used in the DATA and AUTH sections. MAJOR is the major version number (0 for this specification). The DATA section of an HTCP message need not be upward or downward compatble between different major version numbers. MINOR is the minor version number (0 for this specification). Feature levels and interpretation rules can vary depending on this field, in particular RESERVED fields can take on new (though optional) meaning in successive minor version numbers within the same major version number. 2.4.1. It is expected that an HTCP initiator will know the version number of a prospective HTCP responder, or that the initiator will probe using declining values for MINOR and MAJOR (beginning with the highest locally supported value) and locally cache the probed version number of the responder. 2.4.2. Higher MAJOR numbers are to be preferred, as are higher MINOR numbers within a particular MAJOR number. Expires August 1998 [Page 3] INTERNET-DRAFT HTCP February 1998 2.5. An HTCP/0.* DATA has the following structure: +0 (MSB) +1 (LSB) +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ 0: | LENGTH | +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ 2: | OPCODE | RESPONSE | RESERVED |F1 |RR | +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ 4: | MSG-ID | + + + + + + + + + + + + + + + + + 6: | MSG-ID | +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ 8: | | / OP-DATA / / / +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LENGTH is the number of octets of the message which are reserved for the DATA section, including the LENGTH field itself. This number can include padding, i.e., not all octets reserved by LENGTH need be used in OP-DATA. OPCODE is the operation code of an HTCP transaction. An HTCP transaction can consist of multiple HTCP messages, e.g., a request (sent by the initiator), or a response (sent by the responder). RESPONSE is a numeric code indicating the success or failure of a transaction. It should be set to zero (0) by requestors and ignored by responders. Each operation has its own set of response codes, which are described later. The overall message has a set of response codes which are as follows: 0 authentication wasn't used but is required 1 authentication was used but unsatisfactorily 2 opcode not implemented 3 major version not supported 4 minor version not supported (major version is ok) 5 inappropriate, disallowed, or undesirable opcode The above response codes all indicate errors and all depend for their visibility on MO=1 (as specified below). Expires August 1998 [Page 4] INTERNET-DRAFT HTCP February 1998 RR is a flag indicating whether this message is a request (0) or response (1). F1 is overloaded such that it is used differently by requestors than by responders. If RR=0, then F1 is defined as RD. If RR=1, then F1 is defined as MO. RD is a flag which if set to 1 means that a response is desired. Some OPCODEs require RD to be set to 1 to be meaningful. MO (em-oh) is a flag which indicates whether the RESPONSE code is to be interpreted as a response to the overall message (fixed fields in DATA or any field of AUTH) [MO=1] or as a response to fields in the OP-DATA [MO=0]. MSG-ID is a 32-bit value which when combined with the initiator's network address, uniquely identifies this HTCP transaction. care should be taken not to reuse MSG-ID's within the life- time of a UDP datagram. OP-DATA is opcode-dependent and is defined below, per opcode. 2.6. An HTCP/0.0 AUTH has the following structure: +0 (MSB) +1 (LSB) +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ 0: | LENGTH | +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ 2: | SIG-TIME | + + + + + + + + + + + + + + + + + 4: | SIG-TIME | +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ 6: | SIG-EXPIRE | + + + + + + + + + + + + + + + + + 8: | SIG-EXPIRE | +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ 10: | | / KEY-NAME / / / +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ n: | | / SIGNATURE / / / +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ Expires August 1998 [Page 5] INTERNET-DRAFT HTCP February 1998 LENGTH is the number of octets used by the AUTH, including the LENGTH field itself. If the optional AUTH is not being transmitted, this field should be set to 2 (two). LENGTH can include padding, which means that not all octets reserved by LENGTH will necessarily be consumed by SIGNATURE. SIG-TIME is an unsigned binary count of the number of seconds since 00:00:00 1-Jan-70 UTC at the time the SIGNATURE is generated. SIG-EXPIRE is an unsigned binary count of the number of seconds since 00:00:00 1-Jan-70 UTC at the time the SIGNATURE is considered to have expired. KEY-NAME is a COUNTSTR which specifies the name of a shared secret. (Each HTCP implementation is expected to allow configuration of several shared secrets, each of which will have a name.) SIGNATURE is a COUNTSTR which holds the HMAC-MD5 digest of the following elements, each of which is digested in its ``on the wire'' format, including transmitted padding if any is covered by a field's associated LENGTH: IP SRC ADDR [4 octets] IP SRC PORT [2 octets] IP DST ADDR [4 octets] IP DST PORT [2 octets] HTCP MAJOR version number [1 octet] HTCP MINOR version number [1 octet] SIG-TIME [4 octets] SIG-EXPIRE [4 octets] HTCP DATA [variable] KEY-NAME (the whole COUNTSTR) [variable] 2.6.1. Shared secrets should be cryptorandomly generated and should be at least a few hundred octets in size. Expires August 1998 [Page 6] INTERNET-DRAFT HTCP February 1998 3 - Data Types HTCP/0.* data types are defined as follows: 3.1. COUNTSTR is a counted string whose format is: +0 (MSB) +1 (LSB) +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ 0: | LENGTH | +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ 2: | | / TEXT / / / +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LENGTH is the number of octets which will follow in TEXT. This field is *not* self-inclusive as is the case with other HTCP LENGTH fields. TEXT is a stream of uninterpreted octets, usually ISO8859-1 ``characters''. 3.2. SPECIFIER is used with the TST and CLR request messages, defined below. Its format is: +---------------------+ | METHOD | : COUNTSTR +---------------------+ | URL | : COUNTSTR +---------------------+ | VERSION | : COUNTSTR +---------------------+ | REQ-HDRS | : COUNTSTR +---------------------+ METHOD (Since HTCP only returns headers, methods GET and HEAD are equivilent, and no other methods are defined for HTCP at this time.) URL (The URL should always include a ``:''<port> specifier, but in its absense, port 80 should be imputed by a receiver.) Expires August 1998 [Page 7] INTERNET-DRAFT HTCP February 1998 VERSION is an entire HTTP version string such as ``HTTP/1.1''. VERSION strings with prefixes other than ``HTTP/'' are outside the domain of this specification. REQ-HDRS are those presented by an HTTP initiator. These headers should include end-to-end but NOT hop-by-hop headers, and they can be canonicalized (aggregation of ``Accept:'' is permitted, for example.) 3.3. DETAIL is used with the TST response message, defined below. Its format is: +---------------------+ | RESP-HDRS | : COUNTSTR +---------------------+ | ENTITY-HDRS | : COUNTSTR +---------------------+ | CACHE-HDRS | : COUNTSTR +---------------------+ 3.4. IDENTITY is used with the MON request and SET response message, defined below. Its format is: +---------------------+
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -