
《连线》杂志创始人 Kevin Kelly(凯文·凯利)在播客上参加一个叫“未来思想家”的节目,他在节目中讨论了 AI 相关的话题。他强调,一切才刚开始,如果有人愿意花点时间稍微深入学习一下人工智能和机器学习,他们就会发现,真正了解人工智能的人并不多。那天下班回家后,我就开始了为期100天的人工智能“深度潜水”。
我把所有东西都列在了 Trello 上。虽然时间不是很充裕,但我还是在100天内完成了近 200 小时的学习。我看了9本书,上了2门 Coursera 课程(现在开始上第三门),听了很多播客节目,还尽可能多地学习其他教程。
Trello 链接:


但这并不意味着没有人在做这件事情,也不意味着像 Max Tegmark 或 Ray Kurzweil 这些聪明人不会谈论和期待它们的出现(它们会的,而且很快)。但目前 AI 的主要形式几乎就是机器学习——人工智能的一个子领域。
机器学习基本上是这样的:
第一步:把问题变成预测问题。换句话说,就是给定输入参数(特征),然后预测结果。
第二步:定义算法或系统,做出决策。这类算法或系统有很多,从线性回归到神经网络、深度学习、支持向量机、递归神经网络、卷积神经网络、生成对抗网络等等。每种算法都是针对一类特殊的预测问题而设计的。要预测一所房子的成本,使用线性回归模型就足够了,预测剧本可以使用递归神经网络(RNN),预测人脸图像可以使用生成对抗网络(GAN)。
第三步:获取大量的训练数据,越多越好。关于房价,可以获取包含房子 (标签) 特征和实际价格的数据。对字符识别,可以获取大量包含字符的图片,并对其进行标记。
第四步:训练模型。提供训练数据,计算错误,调整并重复,直到错误最小化。在这里,梯度下降和反向传播是两个重要的概念。
假设找到了最小误差,模型就准备好了——为它提供新特征,它就可以预测结果。结果往往非常准确,通常比人类更准确。

在开始100天的学习前,我就知道机器学习与数学有关,只是不知道关系有多大。对任何一个入门者来说,了解微积分和代数是非常有帮助的。幸运的是,就算不是数学专业的学生也能掌握这些知识,而且机器学习的全民化进程正在不断推进中。
重要的机器学习框架包括谷歌的 Tensorflow、微软的 ML.NET 和 PyTorch,它们为程序员添加了一个抽象层,甚至是额外的抽象层,比如位于 Tensorflow 之上的 Keras。
我们还可以将机器学习模型作为一种服务,或者通过创建自动化工具(如 AutoML 和 Auto-Keras)让机器学习变得更容易。
机器学习模型中的偏见是个大问题。Amy Webb 的伟大著作《九巨头》(The Big Nine) 有很多章节都提到了这个问题。测试数据的全面性和多样性是非常重要的,但它们也是文明目前最缺的东西。


Kevin Kelly(凯文·凯利)是对的。我们还处在人工智能和机器学习的早期阶段。是的,有很多应用已经渗透到我们的生活中,但在这个领域仍然有很多机会。
机器学习能够、已经、也将彻底改变一切。在过去100天里,我读了很多书,Marshall Brian 的《Manna》就是其中之一。它描述了一个近乎乌托邦的世界,在这个世界里,机器和自动化已经接管了所有工作,人类可以过上自己想要的生活。不需要 AGI,只需要机器学习。但这样的世界离我们还有多远?
Instagram 名人和 Youtube 视频博主的内容甚至可以完全由 GAN 和 RNN 生成。一种由机器学习驱动的娱乐新模式,从电影脚本到逼真的 3D 模型,一切都是由机器学习模型生成的。你甚至都不要再去面试工作了,因为可以通过机器学习将你与空缺职位进行匹配,所以又何必费事去面试呢?从癌症治疗到餐馆晚餐,再到实时生成音乐,一切都可以实现高度个性化。自动驾驶出租车、基于 RNN 的文案服务、自动化服务协议、自动化法庭裁决、个性化生活改善策略、无人机送货、基于人工智能的投资,这些例子数不胜数。它们都是实实在在的,而且几乎都是目前可以实现的。
人工智能和机器学习也可能影响到人类文明,帮助人类降低风险,比如气候变化、战争、小行星撞击和疾病。
世界即将开始发生变化。我们可能会注意到,也可能不会。人工智能将推动这一切,它已经开始向我们逼近。
正如 Kevin Kelly(凯文·凯利)所说的:
未来缓慢而来,然后突然爆发。
原文链接:
https://medium.com/swlh/top-5-insights-after-i-spent-100-days-learning-about-artificial-intelligence-b14b44a67134
IEEE Spectrum
《科技纵览》
官方微信公众平台
往期推荐

