田崎一二及夫人 图片来源:irp.nih.gov在1997年的一次NIH重组中,田崎关闭了自己的实验室,搬到了巴塞实验室所在的一个小地方。他继续一周工作七天,直到90多岁。2008年12月的一天,他在家附近散步时,突然失去平衡,头摔在地上。一周后他去世了,享年98岁。那时,田崎的工作早已从人们的视野里消失了。美国马萨诸塞大学阿默斯特分校(University of Massachusetts Amherst)的生物物理学家艾德里安·帕赛吉安(Adrian Parsegian)从1967年到2009年一直在NIH工作,他说,“我不认为有谁质疑那些现象的存在,因为田崎在实验室是很受尊敬的。”但是人们认为田崎的发现不是神经信号的本质,更多只是电信号的副产物。“真正的科学问题并没有得到解决,”帕赛吉安说,“同一件事的一面进入了教科书,而另一面没有。”━━━━神经信号其实是机械波?上世纪80年代中期,亨伯格正在德国马普生物物理化学研究所攻读博士学位,他就是在那个时候接触到田崎的工作的。他一下子对这个问题着了迷,整天在图书馆翻阅古老的文献。和田崎的理论不同,亨伯格找到了另一种解释实验现象的方法。他认为,机械波、光学性质变化和瞬时热效应源自脂质的神经细胞膜,而不是细胞膜下方的蛋白质与碳水化合物纤维。
托马斯·亨伯格(Thomas Heimburg) 图片来源:Niels Bohr Institutet亨伯格立刻开始了自己的实验——通过压缩人造细胞膜,研究它们对机械冲击波的响应。他的研究得到了一些重要发现:组成细胞膜的油性脂质分子通常情况下可以流动,有着随机的朝向,但很容易发生相变(物质从一种相转变为另一种相的过程)。只要轻轻挤压细胞膜,脂质分子就会立即凝聚成高度有序的液晶状态。亨伯格根据这些实验推断,神经冲动是沿着神经细胞膜传播的机械冲击波。冲击波传播时把液态的细胞膜分子挤压成液晶,在相变过程中释放出一点热量,就像水结成冰一样。然后,当冲击波通过后,细胞膜会再次变回液态,并吸收热量,整个过程耗时数毫秒。短暂的相变过程使得细胞膜稍稍变宽,正如田崎和岩佐用激光照射铂片时观测到的一样。教科书上通常把细胞膜描绘成一层薄薄的绝缘层。但现在,物理学家开始意识到,细胞膜有着令人惊异的各种属性。它属于一类叫做压电体的材料,在压电材料内,机械能和电能可以互相转化。石英手表的物理原理便基于此。这意味着,细胞膜上的电压脉冲同样携带着机械波,而机械波也可能以电压脉冲的形式出现。这一理论的实验证据被亨伯格曾经的学生找到了。2009年,现就职于德国多特蒙德工业大学(Technical University of Dortmund)的生物物理学家马提亚·施耐德(Matthias Schneider)发现,对人造细胞膜施加电压脉冲可以触发机械波。他所用的脉冲强度和神经细胞中的电冲动相似,产生的冲击波的速度约为50米/秒,与神经信号在人体内的传播速度差不多。2012 年,施耐德又证实,机械波和电压脉冲是在膜上传播的同一个波的不同部分。不过施耐德最重要的发现是在2014年。神经冲动的一个关键特征是“全或无”。假如神经细胞接收的是低于特定阈值的刺激,它不会产生任何响应。只有当输入足够强,细胞才会放电。施耐德发现,人造细胞膜表面的电-机械波同样也是“全或无”的。细胞膜是否受到足够的压力进入液晶态,似乎是决定电-机械波能否产生的因素。“只有在这种情况下,”施耐德说,“你才能观察到神经冲动”。━━━━饱受争议亨伯格把自己的理论命名为“孤波理论”(soliton theory,孤波指的是在传播过程中保持形状不变的波),但迄今为止生物学界的态度让他沮丧。他的理论最早发表2005年的《美国国家科学院院刊》(Proceedings of the National Academy of Sciences,PNAS)上,尽管该杂志在学术界有很高声望,但是对他的批评自那时起就没有停息过。加拿大渥太华医院研究所(Ottawa Hospital Research Institute)已经退休的著名神经生物学家凯瑟琳·莫里斯(Catherine Morris)就是质疑者之一,她告诉我,亨伯格的研究处处透露出一个自认为可以轻松进入其他领域,纠正别人的错误观念的物理学家的傲慢。她的感受可以用一句她最喜欢的话概括:“我听到的就是典型的物理学家论调——‘我们可以把这只奶牛近似成一个点’。”