当希勒尔·弗斯滕伯格(Hillel Furstenberg) 发表其早期的一篇论文时,有传言说他并非一个人,而是一群数学家的化名。该论文涵盖的思想覆盖诸多领域,真的不可能是一个人的成果吗? 虽然这件事可能是杜撰的,但它说明了在弗斯滕伯格整个学术生涯中存在的一个事实:弗斯滕伯格拥有不同领域深厚的技术知识,并且在这些知识之间建立了深刻而令人惊讶的联系。尤其是,他在遍历理论领域做出了重要贡献,该理论在数论、几何学、组合论、群论和概率论中都有非常广泛的应用。弗斯滕伯格1935年出生于柏林。他来自一个犹太家庭。二战爆发的前几个月,他们设法离开德国,逃往美国。弗斯滕伯格的父亲死于途中,他则由母亲和姐姐抚养长大,后来他们生活在纽约的一个东正教社区。当 弗斯滕伯格看到老师在解释著名理论时陷入困境时,他开始对数学产生了浓厚的兴趣.这位学生喜欢自己寻找证据。“有时候坏老师会教出好学生!”他说。他高中和大学就读于叶史瓦大学,并于1955年获得学士学位和理科硕士学位。大学期间他就已经发表论文。《关于一种不定式的说明》(Note on one type of indeterminate form )(1953) 和《关于素数的无穷性》(On the infinitude of primes)(1955) 均发表于《美国数学月刊》上,后者为欧几里德的著名定理提供了拓扑证明,即有无限多个素数。后来弗斯滕伯格前往普林斯顿大学攻读博士学位,他的导师是博赫纳( Salomon Bochner)。他于1958年获得博士学位,其论文为《预报理论》(Prediction Theory)。当这篇论文于1960年发表时,一位评论家曾说:“这是一篇一流的、高度原创的论文,论述了一个非常难的主题。”分别在普林斯顿大学和麻省理工学院担任了一年讲师后,他于1961年在明尼苏达大学获得第一份助理教授的工作。在1963年开始发表的一系列文章中,他凭借《半单李群的泊松公式》(A Poisson Formula for SemiSimple Lie Groups) 继续确立了作为独创性思考者的地位。他的研究表明,随机游走在一个群上的行为与该群的结构有着复杂的关系(现称弗斯滕伯格边界(Furstenberg Boundary)的来源),这对格及李群的研究产生了巨大影响。他被提升为明尼苏达大学的正教授,但在1965年,他离开美国前往耶路撒冷的希伯莱大学,一直待在那里直到2003年退休。在其1967年的论文《遍历理论中的不交性、极小集以及丢番图近似中的一个问题》(Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation) 中,弗斯滕伯格介绍了“不交性”的概念,这是遍历性系统中的一个概念,类似于整数的共素性。事实证明,该概念已应用于数论、分形学、信号处理和电气工程等领域。在其 1977 年的论文《对角线测量的遍历行为和关于算术级数的塞迈雷迪定理》(Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions) 中,弗斯滕伯格使用遍历理论中的方法证明了安德烈·塞迈雷迪(Andre Szemerédi, 2012年阿贝尔奖获得者)的著名结论,该结论指出,具有正上密度的整数的任何子集均包含任意大的算术级数。弗斯滕伯格的证明比塞迈雷迪更具概念性,并完全改变了这一领域。它的见解也变得富有成效,成为很多重要研究成果的依据,例如格林(Ben Green)和陶哲轩证明了素数的序列包括任意大的算术级数。弗斯滕伯格决定在以色列度过自己几乎所有的职业生涯,这使该国成为数学,尤其是遍历理论的世界中心。在1975-1976学年,他与本杰明·韦斯(Benjamin Weiss)一起在以色列高等研究院进行了为期一年的遍历理论研究,该研究被认为已改变了这一领域。在其众多荣誉之中,弗斯滕伯格还获得了以色列奖(被视为以色列最高荣誉)和沃尔夫数学奖。他还是以色列科学院和美国文理科学院的成员。弗斯滕伯格于1958年与专攻艺术和文化的杂志作家罗谢尔(Rochelle)结婚。他们有五位子女,十六位孙辈,以及越来越多的曾孙辈。