采用卷积神经网络(CNN)和卫星图像数据来预测区域收入水平的方法已经越来越广泛,部分方案正在尝试逐步商业化以推向市场。但由于 CNN 的「黑盒」特点,大多数模型并不能解释其预测的背后过程。 近期的一项研究采用热力图 Grad-CAM 对神经网络进行可视化,进一步探索了这些预测背后的逻辑,让人们对这些模型的可靠性产生了怀疑——在预测过程中是否采用了相似的特征,以及这些特征与收入水平的相关性。


图 1:巴黎地区实际统计(左)和算法预测(右)的人均收入地图对比。每个像素代表 4000 平方米,颜色深浅代表不同地区居民的社会经济平均水平。来源:Abitbol & Karsai.
该研究的最终目标是通过分析某一地区当前的卫星 / 航空图像来收集有关该地区经济发展的数据,从而逐步替代人工收集的人口普查数据。在理想情况下,该模型需要具备可概括、可理解特点,即在区域 A 上训练出的模型应该在区域 B 上产生一致的结果,并且确保模型采用了正确的信号。

由国家地理信息研究所 (IGN) 提供的法国市政的航拍照片; 由法国国家统计和经济研究所 (INSEE) 提供的高分辨率的社会经济地图 (2019 年); 由欧洲环境署提供的欧盟城市地图集 (2012 年),包含欧盟 28 个国家和欧洲自由贸易区 22 个国家。
https://geoservices.ign.fr/documentation/diffusion/telechargement-donnees-libres.html#ortho-hr-sous-licence-ouverte https://www.insee.fr/fr/statistiques/4176290?sommaire=4176305 https://land.copernicus.eu/local/urban-atlas/urban-atlas-2012

巴黎某一区域内的数据采集样本:a. 遥感 / 航拍图像;b. 收入的空间分布;c. 功能的空间分布。
该研究的代码现已开放,可免费用于非商业用途:
https://doi.org/10.5281/zenodo.3906063
https://arxiv.org/abs/2004.04907

基于航拍图像(a),使用 Grad-CAM 计算出最贫困地区(b)和最富裕地区(c)的社会经济阶层的热力图;将热力图与航拍图进行叠加训练 CNN,得出城市功能区域的多边形图(d),计算出最贫穷地区(e)和最富裕地区(f)的标准化激活比率。( UA: urban area; DUF: discontinuous urban fabric)
通过将高分辨率的类判别激活图投射到原始地图上,并与土地利用数据叠加,以生成经验统计的特征,使模型更为准确地预测该地区在社会经济地位方面的土地利用类别。这一方案让社会经济地位的预测范围更加广泛,同时也精确地指出了预测城市环境的真实特征。此外,它还提供了不同的城市在城市拓扑结构和财富分配之间的关联模式。
该研究发现,在推测社会经济地位的过程中,CNN 模型忽略了土地利用和社会经济数据之间的现有相关性,而主要关注包含在居民区内的特征。这一发现为预测的实际应用引入了更多可解释性和参考,让政策的制定者和决策者不仅能够增进其模型内部运作模型的理解,同时也将为贫困地区的城市发展和城市规划带来更多启发。
尽管 CNN 已显示出收集地理社会经济数据的潜力,但该研究表明,其预测背后的过程存在不可靠可能,因此应进行进一步研究。接下来,该研究小组将会在预测模型的可解释性方面进行更多探索,使其能够更有效和可靠地执行。
Abitbol & Karsai 说道,「我们对于影响模型可预测和可解释程度的因素十分感兴趣,此外我们还将通过传统的视觉识别算法进行收入水平的预测,以验证 CNN 模型在不同地区的迁移能力以及进行高精度社会经济预测的准确性。」
文章来源:机器之心
IEEE Spectrum
《科技纵览》
官方微信公众平台

