Ga2O3技术原理与优势
尽管如此,被视为第四代之超宽禁带氧化镓(Ga2O3)和钻石等新一代材料,特别是Ga2O3因其基板制作相较于SiC与GaN更容易,又因为其超宽禁带的特性,使材料所能承受更高电压的崩溃电压和临界电场,使其在超高功率元件之应用极具潜力。

上图(a)为现今常用之半导体材料所适用之频率与工作功率范围,(b)为现今常用之半导体材料其对应之能隙与崩溃电场。可发现Ga2O3应用之功率范围高达1kW-10kW
Ga2O3拥有五种晶相(polymorphs)(monoclinic(β-Ga2O3),rhombohedral(α),defective spinel(γ), cubic(δ), or orthorhombic(ε)),且拥有约4.5-4.9eV的超宽禁带与临界电场(Ebr)高达8MV/cm,相较于GaN 的能隙3.4eV,SiC的能隙3.3eV都高出许多,在Barliga评价(BFOM)宽禁带半导体的系数中Ga2O3高达3444,是SiC的十倍、GaN的四倍,此一系数关系着元件所能承受之最高电压,由此BFOM系数也可以看到Ga2O3在高功率元件之应用潜力。(相关之材料特性比较如表(一)所示。)

表(一)相关之材料特性比较
在高功率元件之应用,除其崩溃电场需够高外,在导通电阻方面也是重要参数之一。如图(二)示,Ga2O3之导通电阻也较GaN与SiC低,也因此Ga2O3在工业或是军事上作为整流器时将会是非常好的应用。

图(二)宽禁带材料其崩溃电场与导通电阻之关系图
车用、光电都看好,应用广泛且前景可期

Ga2O3传感器应用现况与未来

Ga2O3应用现况与未来
我们离Ga2O3落地还有多远?
目前Ga2O3在材料本身主要之问题为散热与P-type掺杂不易达成;散热方面,可以发现热导率(0.25 W/cm.K)相较于其他高功率材料差;SiC热导率4.9 W/cm.K,GaN热导率2.3 W/cm.K,散热问题严重的话会造成在组件操作方面接口的热崩溃,目前主要透过结构设计解决此问题,例如使用高导热系数的基板帮助分流其操作的高温。
而P-type掺杂则更为棘手,目前尚未有足够的电洞迁移率文献被发表提出,现有资料主要归纳出以下三个原因:首先因为Ga2O3在氧的共价键方面为2p轨域,拥有非常强的键结电子不容易被抢走,造成深受子态(deep acceptor state)。第二,Ga2O3中的电洞有效质量(effective mass)太高,造成平坦价带(flat valence band)边缘倾向于氧。最后,因为自由电洞的容易被自我捕捉(self-trapped)于晶格扭曲(latticedistortion)中,使扩散与低电场的漂移都不太可能去实现。这是Ga2O3目前所面临的一些问题,有待去改善以达到更多元的应用。
长晶部份,主要有floating zone(FZ)、edgedefined film(EFG)、与 Czochralskimethods(CZ),这些方法在制作蓝宝石基板已经使用多年,因此在生产浅潜力上相较其他化合物半导体GaN和SiC,更能大量生产与降低成本。
在现今商业生产上主要应用EFG长晶法(如下图所示),此方法能生产大量且高纯度的Ga2O3晶圆,在N2/O2下融化高纯度(5N)的Ga2O3 Powder在Ir的坩锅中,并以每小时15 mm的速率从晶种中拉出晶棒,最后再去清洗切割,若要n-type掺杂后续再掺Sn或Si等元素。

EFG长晶法成长Ga2O3晶棒之示意图
综观上述,Ga2O3属于新开发之材料,潜力极佳与产业应用前景可期。
作者:洪瑞华
文章来源:科技新报(台)
IEEE Spectrum
《科技纵览》
官方微信公众平台

