均衡可以分为发送端均衡和接收端均衡,发送端均衡称为加重(包括预加重和去加重),接收端的均衡有FFE(Feed Forward Equalization)(也常用于发送端),CTLE(Continuous Time Linear Equalization)和DFE(Decision Feedback Equalization)几种。
1 Emphasis
加重可以分为预加重(Pre-Emphasis)和去加重(De-Emphasis),都是通过在TX端改变高、低频成分,区别是预加重是增加高频成分,去加重是减少低频成分,经过TX端的均衡后能够改善信号质量,现在一般都使用去加重的方式(因为电路实现简单,功耗低),常用的有2种:Pre cursor和Post cursor,一般情况下Post cursor使用较多,在链路较恶劣的时候加一些Pre cursor可以使眼图的“眼皮”变薄。De-Emphasis的大小是由高频部分和低频部分的比值决定的,高频部分电压和低频部分电压的比值越大,对抗链路差损的能力也就越强。
预加重(Pre-emphasis):信号传输线表现出来的是低通滤波特性,传输过程中信号的高频成分衰减大,低频成分衰减少。预加重技术的思想就是在传输线的始端增强信号的高频成分,以补偿高频分量在传输过程中的过大衰减。信号频率的高低主要是由信号电平变化的速度决定的,所以信号的高频分量主要出现在信号的上升沿和下降沿处,预加重技术就是增强信号上升沿和下降沿处的幅度。
去加重(De-emphasis):去加重技术的思想跟预加重技术有点类似,只是实现方法有点不同,预加重是增加信号上升沿和下降沿处的幅度,其它地方幅度不变;而去加重是保持信号上升沿和下降沿处的幅度不变,其他地方信号减弱(减少了低频成分)。去加重补偿后的信号摆幅比预加重补偿后的信号摆幅小,眼图高度低,功耗小,EMC辐射小。

对于预加重技术来说,其对信号改善的效果取决于其预加重的幅度的大小,预加重的幅度是指经过预加重后跳变比特相对于非跳变比特幅度的变化。数字总线中经常使用的预加重有3.5dB、6dB、9.5dB等。对于6dB的预加重来说,相当于在发送端看,跳变比特的电压幅度是非跳变比特电压幅度的2倍。
简单的预加重对信号的频谱改善并不是完美的,比如其频率响应曲线并不一定和实际的传输通道的损耗曲线相匹配,所以高速率的总线会采用阶数更高、更复杂的预加重技术。上图是一个3阶的预加重,其除了对跳变沿后面的第1个比特进行预加重处理外,跳变沿之后的第2个比特的幅度也有变化。跳变沿后第1个比特的幅度变化有时也叫PostCursor1,跳变沿后的第2个比特的幅度变化有时也叫Post Cursor2。有些总线如PCI-E3.0,会对跳变沿前面的1个比特的幅度也进行调整,叫做Pre Cursor1,有时也称为Pre Shoot。
由于真正的预加重电路在实现的时候需要有相应的放大电路来增加跳变比特的幅度,电路比较复杂而且增加了系统功耗,所以在实际应用时更多采用的是去加重的方式(De-Emphasis)。去加重技术不是增大跳变比特的幅度,而是减小非跳变比特的幅度,从而得到和预加重类似的信号波形。
最简单的去加重实现方法是把输出信号延时一个或多个比特后乘以一个加权系数并和原信号相加。下图是一个实现4阶去加重的简单原理图。

去加重方法实际上压缩了信号直流电平的幅度,去加重的比例越大,信号直流电平被压缩得越厉害,因此去加重的幅度在实际应用中一般很少超过-9.5dB。
做完预加重或者去加重的信号,如果在信号的发送端(TX)直接观察,并不是理想的眼图。下图所示是在发送端看到的一个带-3.5dB预加重的10Gbps的信号眼图,从中可以看到有明显的“双眼皮”现象。

如果预加重的设置和传输通道造成的损耗近似匹配,这样的信号虽然在发送端看起来眼图质量不理想,但是经过传输通道传输到达接收端后,看到的信号眼图还是不错的。这是由于信号经过PCB或电缆传输以后,高频分量会衰减,跳变bit的幅度衰减会比非跳变bit大很多。因此通常在信号的接收端(RX)是看不到明显的预加重或去加重效果的,而是改善后的眼图。因此从本质上说,预加重或去加重也属于一种信号的预失真技术。


2 Equalization
预加重和去加重能很好的补偿信号在传输过程中的损耗,改善信号质量,但是预加重和去加重技术也存在一些缺陷,比如当线路上存在串扰时,预加重和去加重会将高频串扰分量放大,增大串扰的危害。为了弥补预加重和去加重技术的缺陷,就出现了均衡技术。
跟预加重和去加重不同,均衡技术在信号的接收端使用,它的特性相当于一个高通滤波器。

均衡器通常是用滤波器来实现的,使用滤波器来补偿失真的脉冲,判决器得到的解调输出样本,是经过均衡器修正过的或者清除了码间干扰之后的样本。自适应均衡器直接从传输的实际数字信号中根据某种算法不断调整增益,因而能适应信道的随机变化,使均衡器总是保持最佳的状态,从而有更好的失真补偿性能。
CTLE是在接收端提供一个带通滤波器,这个带通滤波器可以对信号里的主要高频分量进行放大,这点和发送端的预加重技术带来的效果是类似的。FFE则是根据相邻bit的电压幅度的加权值来进行幅度的修正,每个相邻bit的加权系数直接和通道的冲击响应有关。CTLE和FFE都是线性均衡技术,而DFE则是非线性均衡技术。DFE技术是通过相邻bit的判决电平对当前bit的判决阈值进行修正,设计合理的DFE可以有效补偿ISI对信号造成的影响。但是DFE正确工作的前提是相邻bit的0/1电平是判决正确的,所以对于信号的信噪比有一定要求。一般情况下是先用CTLE或FFE来把信号眼图打开,然后再用DFE进一步优化。
2.1 CTLE

2.2 FFE


FFE由延迟电路(Delay)、乘法器、加法器组成,延迟电路的时间延迟正好是1个比特,Tap系数(tap level)是每一级乘法器(放大器)的增益,输入信号通过每一级处理后相加得到输出波形,即FFE均衡后的波形。
上图是某3阶FFE均衡器(3个tap)的系统简化示意图,输入信号为左上角的红色信号,淡紫色虚线标识的波形是理想的信号波形,由于信道使到达RX的信号恶化,均衡器的输入信号相比理想波形,其幅度较低、上升时间与下降时间较慢。第一、二、三级乘法器的系数分别为C1=-0.3、C2=1.4、C3=-0.5。第二级乘法器的增益为1.4,可以大大提升信号的幅度,其输出波形如图粉红色波形;第一级乘法器的系数C1=-0.3,产生一个负向的脉冲信号,用于补偿信号的上升沿;第三级乘法器的系数C3=-0.5,用于补偿信号的下降沿。三级乘法器的输出相加后的信号为图中的黑色波形,其幅度接近理想信号,上升、下降沿都比均衡器的输入信号更快。FFE的均衡器的响应很像一个高通滤波器。在这个3-tap的FFE均衡器中,第二个乘法器是用于补偿幅度的,由于前面还有一级乘法器,所以称为pre-cursortap=1的FFE均衡器。
FFE的优点是不会放大信号的噪声,另外,在恶劣的链路环境下,如果光依靠RX的均衡无法使得眼图睁开,在这种情况下推荐使用FFE。
2.3 DFE
下图所示为某3-tap的DFE均衡器的示意图。DFE均衡器中包括了延时电路、乘法器和加法器,和FFE均衡器有些相似。不过DFE反馈回的信号是二进制信号,而FFE反馈的是模拟信号。


DFE不会放大噪声与串扰,易于实现,在高速收发器芯片中非常流行。