
作者:丁浪,目前在创业公司担任高级技术架构师。曾就职于阿里巴巴大文娱和蚂蚁金服。具有丰富的稳定性保障,全链路性能优化的经验。架构师社区特邀嘉宾!
我从业之初便开始扮演“救火队员”角色,经常去线上执行“救火”、止损、攻关等应急工作,再通过分析、推理、验证…“抽丝剥茧”的找出背后的根本原因,仿佛自己是个“经验丰富、从容冷静、思维缜密”的侦探。以前我一直认为线上问题定位、分析处理能力是架构师的“看家功底”并常引以为傲。但最近这两年我开始思考,其实“防火”比“救火”更重要,正如一句古话“上医治未病,中医治欲病,下医治已病”。下面我将为大家分享稳定性治理经验和阿里的稳定性保障体系。
突发大流量
相信大家对上图并不陌生,尤其在刚刚过去的双11、双12中。这是电商大促场景中执行了最常用的自动预案 - “限流保护”,并非很多朋友说的“宕机”、“崩溃”。“限流”是应对高并发或者突发大流量场景下的“三板斧”之一,不管是在电商大促、社交媒体突发热点事件(例如:遇到“知名女星出轨”),还是在常态下都是非常有必要的保护手段。本质上就是检查到当前请求量即将超出自身处理能力时,自动执行拒绝(或者执行“请求排队”),从而防止系统被彻底压垮。不稳定服务
讲到“限流”,那就不得不提另外一板斧“降级”。除了我们之前所提到的 “开关降级”(关闭次要功能或服务)、兜底、降低一致性等之外,在技术层面最常用就是“自动熔断降级”。“限流”是为了防止大流量压垮系统,而“熔断”是为了防止不稳定的服务引发超时或等待,从而级联传递并最终导致整个系统雪崩。如图所示,假设服务D此时发生了故障或者FullGC等,则会导致上游的服务G、F中产生大量等待和异常,并级联传递给最上游的服务A、B。即便在服务G、F中设置了“超时”(如果没有设置“超时”那情况就更糟糕了),那么也会导致线程池中的大量线程资源被占用。如果服务H、I和服务G、F在同一个应用中且默认共用同一个线程池,那么也会因为资源耗尽变得不可用,并最终导致最上游的服务A和服务B整体不可用,全部链路都将异常,线上核心系统发生这种事故那就是灾难。假如我们在检查到服务G和服务F中RT明显变长或者异常比例增加时,能够让其自动关闭并快速失败,这样H和I将不会受影响,最上游的服务A和服务B还能保证“部分可用”。举个现实生活中更通俗的例子,当你们家的电器发生短路时空气开关会自动跳闸(保险丝会自动 “熔断”),这就是通过牺牲你们家的用电而换回小区的正常供电,否则整个线路都会烧毁,后果会不堪设想。所以,你得结合实际业务场景先找出哪些接口、服务是可以被“降级”的。架构单点
这个事件大概发生在2015年,被载入了支付宝的“史册”,也推动了蚂蚁金服整体LDC架构(三地五中心的异地多活架构)的演进。
内建质量
根据以往的经验,60%以上的故障都是由变更引起的,请牢记变更“三板斧”:
- 测试用例覆盖(通过率、行覆盖率、分支覆盖率),变更全量回归
- 尽可能的自动化,避免人肉(易出错),关键时刻执行double check
从故障视角来看稳定性保障
稳定性保障的核心目标
仔细思考一下,所有的稳定性保障手段都是围绕这些目标展开的。上图涵盖了稳定性体系的各个方面,下面我来一一讲解。应用架构稳定性
应用架构稳定性相对是比较广的话题,按我的理解主要包括很多设计原则和手段:- 架构设计简单化。系统架构简单清晰,易于理解,同时也需要考虑到一定的扩展性,符合软件设计中KISS原则。现实中存在太多的“过度设计”和“为了技术而技术”,这些都是反例,架构师需懂得自己权衡;
- 拆分。拆分是为了降低系统的复杂度,模块或服务“自治”,符合软件设计中“单一职责”原则。拆分的太粗或者太细都会有问题,这里没有什么标准答案。应该按照领域拆分(感兴趣同学可以学习下DDD中的限界上下文),结合业务复杂程度、团队规模(康威定律)等实际情况来判断。可以想象5个人的小团队去维护超过30多个系统,那一定是很痛苦的;
- 隔离。拆分本质上也是一种系统级、数据库级的隔离。此外,在应用内部也可以使用线程池隔离等。分清“主、次”,找出“高风险”的并做好隔离,可以降低发生的几率;
- 冗余。避免单点,容量冗余。机房是否单点,硬件是否单点,应用部署是否单点,数据库部署是否单点,链路是否单点…硬件和软件都是不可靠的,冗余(“备胎”)是高可用保障的常规手段;
- 无状态、一致性、并发控制、可靠性、幂等性、可恢复性…等。比如:投递了一个消息,如何保障消费端一定能够收到?上游重试调用了你的接口,保证数据不会重复?Redis节点挂了分布式锁失效了怎么办?… 这些都是在架构设计和功能设计中必须考虑的;
- 尽可能的异步化,尽可能的降低依赖。异步化某种程度可以提升性能,降低RT,还能减少直接依赖,是常用的手段;
我在团队中经常强调学会“面向失败和故障的设计”,尽可能做一个“悲观主义者”,或许有些同学会不屑的认为我是“杞人忧天”,但事实证明是非常有效的。从业以来我有幸曾在一些高手身边学习,分享受益颇多的两句话:上图是比较典型的互联网分布式服务化架构,如果其中任意红色的节点出现任何问题,确定都不会影响你们系统正常运行吗?限流降级
前面介绍过了限流和降级的一些场景,这里简单总结下实际使用中的一些关键点。- 需要什么限流策略,是“单机限流”还是“集群限流”?
- 是使用手工降级(在动态配置中心里面加开关)还是自动熔断降级?熔断的依据是什么?
- 哪些服务可以执行兜底降级的?怎么去兜底(例如:挂了的时候走缓存或返回默认值)?
这里我先卖下关子,篇幅关系,下篇文章中我会专门讲解。监控预警
上图是我个人理解的一家成熟的互联网公司应该具备的监控体系。前面我提到过云原生时代“可观察性”,也就是监控的三大基石。这里再简单补充一下 “健康检查”,形成经典的“监控四部曲”: 关于健康检查,主要就分为“服务端轮询”和“客户端主动上报”2种模式,总的来讲各有优缺点,对于类似MySql这类服务是无法主动上报的(除非借助第三方代理)。需要注意的是传统基于端口的健康检查很难识别“进程僵死”的问题。提到监控那就不得不提Google SRE团队提出的监控四项黄金指标:类似的还有USE方法,RED方法,感兴趣的读者可以自行查阅相关资料。云原生时代通常是应用/节点暴露端点,监控服务端采用pull的方式采集指标,当前比较典型的就是Prometheus监控系统,感兴趣的可以详细了解。当然,以前也有些监控是通过agent采集指标数据然后上报到服务端的。除了监控自身,告警能力也是非常重要的。告警的阈值配多少也需要技巧,配太高了不灵敏可能会错过故障,配太低了容易“监控告警疲劳”。强弱依赖治理
这是网上找的一张“系统依赖拓扑图”,可见面对这种复杂性,无论是通过个人经验,还是借助“链路跟踪工具”都很难快速理清的。何为强弱依赖
A系统需要借助B系统的服务完成业务逻辑,当B挂掉的时候会影响A系统中主业务流程的推进,这就是“强依赖”。举个例子:下单服务依赖“生成订单号”,这就是“强依赖”,“扣库存”这也是 “强依赖”;同理,当A依赖的B系统挂掉的时候,不会影响主流程推进,那么就是“弱依赖”。例如:购物车页面中显示的库存数是非必须的;如何梳理出这种强弱依赖,这个在阿里内部是有专门的中间件可以做的,目前开源社区没有替代品,可能就要结合链路跟踪+个人的经验,针对系统级,接口级去做链路梳理。我们重点关注的是 “强依赖”,而“弱依赖” 通常是可以执行容灾策略的,例如:可以直接降级掉,可以返回为空或者默认值、执行兜底等; 总结出来关键有几点:当前业务功能/应用/服务、依赖的服务描述、依赖类型(比如:RPC调用),峰值调用量、链路的流量调用比例、强弱等级、挂掉的后果等。容量规划
容量规划是非常重要的,无论是成本控制还是稳定性保障都需要。否则压根不知道需要投入多少资源以及资源投入到哪里。需要了解系统极限水位在哪里,再推算出合理的“阈值”来做好“过载保护”,这也是执行是限流、降级等预案体系的关键依据和基础。第一阶段:主要依靠经验值、理论值等来预估的,或者是靠“拍脑袋”的。前几年资本市场情况比较好,互联网公司比较典型的现象:老板,我需要买100台服务器,50台跑应用,20台跑中间件,10台做数据库…预计可以扛住日均1000W访问量,每天100W订单…靠谱一点的人还能扯出 “MySql并发连接数在几core几G大概能到xxx”、 “Redis官方称可以达到10W TPS”之类的参考值,这种至少听起来还有那么一点道理。不靠谱的人呢。那可能就真是瞎说的一个数字,或者会说“我上家公司就用了这么多支撑的”,其实纯靠拍脑袋的。总之,这都是很不靠谱的。会造成资源分配不合理,有些浪费而有些饥荒。第二阶段:通过线下压测手段来进行。线下压测通常是压测的单接口、单节点,压测结果可以帮助我们了解应用程序的性能状况、定位性能瓶颈,但是要说做整体的容量规划,那参考价值不大。因为实际情况往往复杂太多,网络带宽、公共资源、覆盖场景不一致、线上多场景混合等各种因素。根据“木桶短板”的原理,系统的容量往往取决于最弱的那一环节。正所谓 “差之毫厘,失之千里”。第三阶段:通过线上单机压测来做。比较常见的手段有:线上引流、流量复制、日志回放等。其中线上引流实施起来最简单,但需要中间件统一。通过接入层或服务注册中心(软负载中心)调整流量权重和比例,将单机的负载打到极限。这样就比较清楚系统的实际水位线在哪里了。这个是阿里首创的,目前很多公司在效仿。属于是业务倒逼技术创造出来的手段。全链路压测涉及到的内容会比较多,关键的步骤包括:- 中间件改造(透传影子标,软负载/消息/缓存/分库分表等路由,建立影子表)