虫虫首页|资源下载|资源专辑|精品软件
登录|注册

功率开关器件

  • 高压三相PFC整流电路的研究

    摘要:为了得到输出稳定、开关耐压力小并且功率因教高的大功率三相整流器,对三相VIENNA 型 PFC电路拓扑进行了研究,对VIENNA整流器的原理进行了调查,根据原有的控制理念,在其控制方面采用了区间控制结合滞环控制法来控制整个电路。在整个系统方案设计究毕后,搭建Malab模型对所设计的电路进行仿真,由仿真结果可以看到系统的输出为稳压输出,开关器件的耐压力为输出电压的一半,输入功率因数为1,并且做了一些小样机对系统所采用的控制进行了验证。关键词:三相拓扑电路;区间控制法;功奉因教校正;滞环拉制1引言传统的三相整流虽然可以满足系统大功率的需求,但是存在谐波大、功率因数低等缺点。三相VIENNA型 PFC整流器,具有控制简单、输入功率因数高、无谐波污染等优点,适合于三相大功率电路,便于工程应用中的实现。文献中采用滞环控制方法1-1,用反馈信号与正弦采样信号组合,再应用PWM技术实现PFC电路的稳压和电流的正弦化.电路电感电流连续CCM和临界连续BCM模式下工作,简化了电路,降低制造成本。针对所作系统进行仿真,验证了系统的可行性和优越性。2 VIENNA电路原理2.1原始主电路如图1所示的电路三相三开关三电平整流电路2,开关采用4个二极管和一个全控型MOSFET管组成。根据电路的对称性可以知道电容中点电位与电网中点的电位近似相同。当A相开关管关断时,E点F点电位相等,Un-Ux则Ua=0.5Un-0.5Uc,又Un=Uc,又Ua-0.5Uc,因此Uw:=0,U-0.5Ux,即VIENNA电路中开关器件只承受了一半的输出直流电压,所以开关管电压应力小,非常适合于大功率三相PFC整流电路。

    标签: 三相PFC整流电路

    上传时间: 2022-06-16

    上传用户:fliang

  • 基于MATLAB的无桥PFC电路仿真

    摘要:文中分析了功率因数校正的必要性,对有源功率因数校正主电路拓扑做了对比分析,确定本文选用无桥拓扑。分析了无桥PFC电路的原理和优缺点,可以看到无桥电路具有开关器件少,功耗低,成本小,电路体积小的优点。在控制方案选择单周期控制,并采用Malab Simulink仿真平台建立仿真模型,通过仿真表明,单周期控制的无桥PFC达到功率因数提高的目的。关键词:功率因教校正;无桥;单周期;Matlab随着电力电子技术的发展,电网中整流器、开关电源等非线性负载不断增加。这些存在冲击性的用电设备,将引起网侧输人电流发生严重畸变,产生大量造波污染,导致电网功率因数过低,所以提高功率因数势在必行"早期功率因数校正采用在整流器后加滤波电感电容实现,功率因数一般只有0.6左右;在20世纪90年代,有源功率因数校正(APFC)产生,是在整流器和负载之间接入一个DC/DC开关变换器,应用电流反馈技术,使输入端电流波形跟踪交流输入正弦电压波形,可以使输入电流波形接近正弦,功率因数可提高到0.99以上。由于该方案采用了有源器件,故称为有源功率因数校正APFC1有源功率因数校正主电路拓扑1.1 传统Boost拓扑传统Boost PFC电路由整流桥和PFC组成,如图1所示。传统Boost PFC电路工作时通过控制开关管的动作,采用反馈来控制电流波形,这样可以使交流网侧输入电流跟踪输入交流电压而接近正弦波,来提高功率因数。但其流通路径有3个半导体工作,当变换器功率和开关频率提高时,系统的系统通态损耗明显增加,整体效率低29

    标签: matlab pfc

    上传时间: 2022-06-17

    上传用户:kid1423

  • 50khz+igbt串联谐振感应加热电源研制

    目前以IGBT为开关器件的串联谐振感应加热电源在大功率和高频下的研究是一个热点和难点,为弥补采用模拟电路搭建而成的控制系统的不足,对感应加热电源数字化控制研究是必然趋势。本文以串联谐振型感应加热电源为研究对象,采用T公司的TMS320F2812为控制芯片实现电源控制系统的数字化。首先分析了串联诺振型感应加热电源的负载特性和调功方式,确定了采用相控整流调功控制方式,接着分析了串联诺振逆变器在感性和容性状态下的工作过程确定了系统安全可靠的运行状态。本文设计了电源主电路参数并在Matlab/Simulink仿真环境下搭建了整个系统,仿真分析了串联谱振型感应加热电源的半压启动模式及锁相环频率跟踪能力和功率调节控制。针对感应加热电源的数字控制系统,在讨论了晶闸管相控触发和锁相环的工作原理及研究现状下详细地分析了本课题基于DSP晶闸管相控脉冲数字触发和数字锁相环(DPL)的实现,得出它们各自的优越性,同时分析了感应加热电源的功率控制策略,得出了采用数字PI积分分离的控制方法。本文采用T1公司的TMS320F2812作为系统的控制芯片,搭建了控制系统的DSP外围硬件电路,分析了系统的运行过程并编写了整个控制系统的程序。最后对控制系统进行了试验,验证了理论分析的正确性和控制方案的可行性。

    标签: igbt 串联谐振 电源

    上传时间: 2022-06-20

    上传用户:pagedown

  • IGBT逆变焊机的PWM设计

    1、弧焊逆变器的基本结构1.1弧焊逆变器的基本原理采用逆变技术的装置称为逆变器,而用于电弧焊的逆变器则称为弧焊逆变器。弧焊逆变器的基本原理方框图如图1-1所示。由图可见,三相50Hz的交流网路电压先经输入整流器整流和滤波,经过大功率开关电子元件的交替开关作用,变成几百赫兹到几十千赫兹的高频电压,经高频变压器降至适合焊按的电压,再用输出整流器整流并经电抗器滤波,则可将中频交流变为直流输出。在弧焊逆变器中可采用如下两种模式:"AC-DC-AC"或"AC-DC-AC-DC",根据不同弧炉工艺的需要,通过电子控制电路和电弧电压、电流反馈,弧焊逆变器即可获得各种不同的输出特性。1,2逆变技术和微机技术在弧焊电源中的应用逆变电源运用先进的功率电了器件和高频逆变技术,比传统的工频整流电源的材料减少80%~90%,节能20%~30%,动态反应速度提高2-3个数量级。这种“明天的电源”正在以极高的速度变成今天的电源,并且随着功率开关元器件、微电子技术和控制技术的发展,不断研究开发出新的技术成果和新产品,使得逆变电源向着高频化、轻量化、模块化、智能化和大容量化方向发展。

    标签: igbt pwm 逆变焊机

    上传时间: 2022-06-20

    上传用户:zhanglei193

  • MOSFET和IGBT区别

    MOSFET和IGBT内部结构不同, 决定了其应用领域的不同.1, 由于MOSFET的结构, 通常它可以做到电流很大, 可以到上KA,但是前提耐压能力没有IGBT强。2,IGBT 可以做很大功率, 电流和电压都可以, 就是一点频率不是太高, 目前IGBT硬开关速度可以到100KHZ,那已经是不错了. 不过相对于MOSFET的工作频率还是九牛一毛,MOSFET可以工作到几百KHZ,上MHZ,以至几十MHZ,射频领域的产品.3, 就其应用, 根据其特点:MOSFET应用于开关电源, 镇流器, 高频感应加热, 高频逆变焊机, 通信电源等等高频电源领域;IGBT 集中应用于焊机, 逆变器, 变频器,电镀电解电源, 超音频感应加热等领域开关电源 (Switch Mode Power Supply ;SMPS) 的性能在很大程度上依赖于功率半导体器件的选择,即开关管和整流器。虽然没有万全的方案来解决选择IGBT还是MOSFET的问题,但针对特定SMPS应用中的IGBT 和 MOSFET进行性能比较,确定关键参数的范围还是能起到一定的参考作用。本文将对一些参数进行探讨,如硬开关和软开关ZVS ( 零电压转换) 拓扑中的开关损耗,并对电路和器件特性相关的三个主要功率开关损耗—导通损耗、传导损耗和关断损耗进行描述。此外,还通过举例说明二极管的恢复特性是决定MOSFET或 IGBT 导通开关损耗的主要因素, 讨论二极管恢复性能对于硬开关拓扑的影响。导通损耗除了IGBT的电压下降时间较长外, IGBT和功率MOSFET的导通特性十分类似。由基本的IGBT等效电路(见图1)可看出,完全调节PNP BJT集电极基极区的少数载流子所需的时间导致了导通电压拖尾( voltage tail )出现。

    标签: mosfet igbt

    上传时间: 2022-06-20

    上传用户:hbsun

  • 基于IGBT的750kVA三相二极管箝位型三电平通用变流模块设计

    IGBT关断电压尖峰是其中的主要问题,解决它的最有效方法是采用叠层母线连接器件。针对二极管籍位型三电平拓扑两个基本强追换流回路,本文用ANSOFT Q3D软件比较研究了三类适用于多层母线排的叠层方案,并提出了一种新颖的叠层母线分组连接结构,结合特殊设计的吸收电容布局,减小了各IGBT模块的关断过冲,省去阻容吸收电路,并优化了高频电流在不同电容间的分布,抑制电解电容发热。通过理论计算与仿真两种方式计算该设计方案的杂散电感,并用实验加以证实。本文还设计了大面积一体化水冷散热器,表面可以贴装15个功率器件和若干传感器和平衡电阻,采用水冷方式以迅速带走满载运行时开关器件的损耗发热,并能达到结构紧凑和防爆的效果。在散热器内部设计了细槽水道结构以避开100多个定位螺孔,同时可以获得更大的热交换面积。本文分析了SCALE驱动芯片的两类器件级短路保护原理,并设计了针对两类保护动作的阈值测试实验,以确保每个器件在安全范围内工作;设计了系统控制和三类系统级保护电路:驱动板和控制板的布局布线经过合理安排能在较强的电磁干扰下正常工作。论文最后,在电抗器、电阻器、异步感应电机等不同类型、各功率等级负载下,对变流模块进行了测试,并解决了直流中点电压平衡问题。各实验证实了设计理论并体现了良好的应用效果。

    标签: igbt 二极管

    上传时间: 2022-06-21

    上传用户:tqsun2008

  • 新能源汽车电机控制器IGBT模块的驱动技术

    IGBT(Insulated Gate Bipolar Transistor)绝缘栅双极型品体管,是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半导体器件,兼有MOSFEt高输入阻抗和GT的低导通压降两方面的优点。IGB综合了以上两种器件的优点,驱动功率小而饱和压降低。成为功率半导体器件发展的主流,广泛应用于风电、光伏、电动汽车、智能电网等行业中。在电动汽车行业中,电机控制器、辅助动力系统,电动空调中,IGBT有着广泛的使用,大功率IGB多应用于电机控制器中,由于电动汽车电机控制器工作环境干扰比较大,IGBT的门极分布电容及实际开关中存在的米勒效应等寄生参数的直接影响到驱动电路的可靠性1电机控制器在使用过程中,在过流、短路和过压的情况下要对1GBT实行比较完善的保护。过流会引起电机控制器的温度上升,可通过温度传感器来进行检测,并由相应的电路来实现保护;过压一般发生在IGBT关断时,较大的di/dt会在寄生电感上产生了较高的电压,可通过采用缓冲电路来钳制,或者适当降低开关速率。短路故障发生后瞬时就会产生极大的电流,很快就会损坏1GBT,主控制板的过流保护根本来不及,必须由硬件电路控制驱动电路瞬间加以保护。因此驱动器的设计过程中,保护功能设计得是否完善,对系统的安全运行尤其重要。

    标签: 新能源汽车 电机控制器 igbt

    上传时间: 2022-06-21

    上传用户:XuVshu

  • 大功率IGBT驱动保护电路的研究与应用

    IGBT是MOSFET和GTR的复合器件,它具有开关速度快、热稳定性好、驱动功率小和驱动电路简单的特点,又具有通态压降小、耐压高和承受电流大等优点.IGBT作为主流的功率输出器件,特别是在大功率的场合,已经被广泛的应用于各个领域。本文在介绍了1GBT结构、工作特性的基础上,针对风电变流器实验平台和岸电电源的实际应用,选择了各自的IGBT模块。然后对IGBT的驱动电路进行了深入地研究,详细地说明了IGBT对栅极驱动的一些特殊要求及应该满足的条件。接着对三种典型的驱动模块进行了分析,同时分别针对风电变流器实验平台和岸电电源,设计了三菱的M57962AL和Concept的2SD315A驱动模块的外围驱动电路。对于大功率的设备,电路中经常会遇到过流、过压、过温的问题,因此必要的保护措施是必不可少的。针对上述问题,本文分析了出现各种状况的原因,并给出了各自的解决方案:采用分散式和集中式过流保护相结合的方法实现过电流保护;采用缓存吸收电路及采样检测电路以防止过电压的出现;通过选择正确的散热器及利用铂电阻的特性来实施检测温度,从而使电路能够更好地可靠运行。同时,为了满足今后1.5MW风电变流器和试验电源等更大功率设备的需求,在性价比上更倾向于采用IGBT模块串、并联的方式来取代高耐压、大电流的单管1GBT.本文就同一桥臂的IGBT串联不均压,并联不均流的问题进行了阐述,并给出了相应的解决方案。最后针对上述的不平衡情形,采用PSpice对其进行仿真模拟,并通过加入均压、均流电路后的仿真结果,有效地说明了电路的可行性。

    标签: 大功率 igbt

    上传时间: 2022-06-21

    上传用户:kid1423

  • 三相四线制有源电力滤波器多目标优化预测控制策略研究

    请波抑制在提升电能质量以及保障供用电设备的安全稳定运行等方面有若关键性作用;无功功率不仅对于供电侧来说十分重要,而且在负载的正常运行过程中扮演着不可替代的角色。伴随功率半导体开关器件的飞速发展,大量的非线性负载涌现在电力系统中,由此带来的谐波污染和无功功率问题愈发严峻。在上述背景下,一方面可以对谐波进行抑制,另一方面又可以补偿无功功率的有源电力滤波器则受到了国内外学者们的青睐。有源电力滤波器的主电路拓扑结构是系统中最基础的部分,本文将由此出发,分别介绍各主电路的结构特征以及基本原理。简单叙述了有源电力滤液器常用的语波检测方法,比较其各白的优劣,其中着重突出本文所用到的基于瞬时无功功率的改进的ip-i法。针对传统电流跟踪控制策略对谐波信号跟踪动态效果差、控制目标单一的问题,在三相四线制不对称负载系统中,提出了一种多目标优化模型预测电流控制策略。首先建立四桥臂有源电力滤波器基于ap坐标系的离散化数学模型.以此来实现自然解耦控制:其次对预测电流进行两步预测,实现对数字处理延时效应的补偿,设置电流跟踪偏差和开关频率为目标函数,量化控制目标,预先评估各开关状态的控制效果,根据评估结果决定变流器的开关状态,去了PWM调制环节;再次讨论了采样频率以及加权系数这两个系统变量的取值对开关频率和电流畸变率所造成的影响;文章的最后,为了验证所提方法的有效性,在Matlab/Simulink仿真环境下进行实验,结果证实所提策略谐波电流跟踪性能良好

    标签: 有源电力滤波器 目标优化

    上传时间: 2022-06-22

    上传用户:slq1234567890

  • FOC死区补偿实现

    目前,小功率通用或专用变频器以及交流变频家电产品大多采用典型的交-直-交电压型逆变器(vsi)结构,逆变实现一般采用双极性 pwm调制技术,即在同一逆变桥臂上、下 2个开关管施加互补的触发信号。由于开关管自身的特性:开通和关断都需要一定的时间,且关断时间比开通时间要长。因此,若按照理想的触发信号控制开关管的开通和关断,就可能导致同一桥臂的2个开关管直通而损坏开关器件。为了防止这种直通现象的发生,必须在它们开通和关断之间插入一定延时的时间,这个延时时间就称为死区。死区时间内2个开关管都处于关断状态,负载电流通过反并联二极管续流,负载电压不受开关管控制,由此造成负载电压波形发生畸变,逆变器的平均输出电压降低,并产生与死区时间以及调制比成正比的3,5,7,…次谐波分量,进而影响到电动机的输入电流和运行质量。当逆变器工作在低输出频率、开关频率较高和负载感性很弱时这种影响相当严重[1.2]。为此,需要对死区的影响进行补偿,以提高变频器的输出性能和改善电动机的运行工况。常用的补偿方法有电流反馈型和电压反馈型,也有单边补偿与双边补偿、纯硬件补偿与硬件软件结合补偿等具体手段,但其工作原理相似,都是产生一个与死区引起的误差波形反向的波形,以抵消死区的作用[3.10].motorola公司推出的电动机专用控制芯片mr16内部集成了专门的死区补偿硬件电路,只需要简单的外围电流极性检测和简单的软件编程就可以实现可靠的死区补偿

    标签: foc 死区补偿

    上传时间: 2022-06-25

    上传用户:ttalli