Hidden
共 95 篇文章
Hidden 相关的电子技术资料,包括技术文档、应用笔记、电路设计、代码示例等,共 95 篇文章,持续更新中。
无刷直流电动机Matlab仿真建模及模型中S函数的编写
<div class="__kindeditor_paste__" style="position:absolute;width:1px;height:1px;overflow:hidden;left:-1981px;top:0px;white-space:nowrap;">
<table cellspacing="1" cellpadding="2" border="0" width="100
三种SMA接口pcb封装
<table cellspacing="0" cellpadding="0" style="word-wrap:break-word;empty-cells:show;table-layout:fixed;width:692px;color:#444444;font-family:Tahoma, "font-size:12px;line-height:18px;background-co
MyEclipse中配置Maven
<div id="blogContainer" style="margin:0px;padding:0px;position:relative;overflow:hidden;height:2002px;">
<div id="blogDetailDiv" data-webp-ctx-e="1" style="margin:0px;padding:0px;min-height:380px;fon
Train a two layer neural network with a recursive prediction error % algorithm ("recursive Gauss-Ne
Train a two layer neural network with a recursive prediction error
% algorithm ("recursive Gauss-Newton"). Also pruned (i.e., not fully
% connected) networks can be trained.
%
% The activation fun
% Train a two layer neural network with the Levenberg-Marquardt % method. % % If desired, it is p
% Train a two layer neural network with the Levenberg-Marquardt
% method.
%
% If desired, it is possible to use regularization by
% weight decay. Also pruned (ie. not fully connected) networks can
Batch version of the back-propagation algorithm. % Given a set of corresponding input-output pairs
Batch version of the back-propagation algorithm.
% Given a set of corresponding input-output pairs and an initial network
% [W1,W2,critvec,iter]=batbp(NetDef,W1,W2,PHI,Y,trparms) trains the
% netwo
sscom32
<div class="c_soft_des c_box" id="introduce" style="padding:1px;border:1px solid #A0C597;margin-bottom:6px;clear:both;position:relative;color:#333333;font-family:arial, helvetica, sans-serif;line-heig
本人编写的incremental 随机神经元网络算法
本人编写的incremental 随机神经元网络算法,该算法最大的特点是可以保证approximation特性,而且速度快效果不错,可以作为学术上的比较和分析。目前只适合benchmark的regression问题。
具体效果可参考
G.-B. Huang, L. Chen and C.-K. Siew, “Universal Approximation Using Incremental C
juniper_SSG_防火墙VPN配置
<div class="para" label-module="para" style="font-size:14px;color:#333333;margin-bottom:15px;text-indent:2em;line-height:24px;zoom:1;font-family:arial, 宋体, sans-serif;white-space:normal;background-col
Multiple alignment using hidden Markov models
Multiple alignment using hidden Markov models
编程开发算法
<h1 style="margin:0px 0px 5px;padding:0px;overflow:hidden;color:#3C3C3C;font-family:'Microsoft YaHei', 微软雅黑;line-height:19.44px;white-space:normal;background-color:#F5F5F5;">
<span class="doc_title f
CNC初级教程
<div class="doc_hd_mini" style="margin:0px;padding:0px;border:0px;list-style:none outside none;position:relative;z-index:9;left:0px;right:0px;top:0px;color:#3C3C3C;font-family:'Microsoft YaHei', 微软雅黑;
共轭梯度法--MATLAB程序
<p class="reader-word-layer reader-word-s2-18" style="width:6772px;height:168px;line-height:168px;top:4214px;left:1449px;z-index:34;">
共轭梯度法为求解线性方程组而提出。后来,人们把这种方法用于求解无约束最优化问题,
</p>
<p class="reader-w
Phase Unwrapping 2D
<p style="margin-top:0px;margin-bottom:0.9em;padding:0px;line-height:16.8px;width:510px;overflow:hidden;color:#191919;font-family:Arial, Helvetica, sans-serif;white-space:normal;background-color:#FFFF
DLMS Color Book
<dl class="lemmaWgt-lemmaTitle lemmaWgt-lemmaTitle-" style="margin:0px 0px 10px;padding:0px;width:700px;font-family:arial, tahoma, 'Microsoft Yahei', 宋体, sans-serif;color:#333333;white-space:normal;ba
广告字体-镂空字体(全)
<p>
<span style="color:#454545;font-family:arial, 宋体, sans-serif, tahoma, 'Microsoft YaHei';font-size:14px;line-height:24px;white-space:normal;background-color:#FFFFFF;">
<h1 accuse="qTitle" style="
Data mining (DM) is the extraction of hidden predictive information from large databases (DBs). Wit
Data mining (DM) is the extraction of hidden predictive information from large databases
(DBs). With the automatic discovery of knowledge implicit within DBs, DM uses
sophisticated statistical analy
易语言仓库管理软件源码
<p style="font-family:宋体, Arial, Helvetica, sans-serif;margin-top:0px;margin-bottom:0px;padding:0px;color:#333333;font-size:14px;line-height:25.2px;border:0px;text-indent:2em;overflow:hidden;clear:bot
Hidden_Markov_model_for_automatic_speech_recognition This code implements in C++ a basic left-right
Hidden_Markov_model_for_automatic_speech_recognition
This code implements in C++ a basic left-right hidden Markov model
and corresponding Baum-Welch (ML) training algorithm. It is meant as
an examp
粒计算下的粗糙集模型对比
<h1 style="margin:0px;padding:15px 0px;font-size:26px;font-weight:normal;font-family:微软雅黑;text-align:center;height:40px;line-height:40px;width:650px;overflow:hidden;color:#333333;background-color:#FFF