驱动高功率

共 153 篇文章
驱动高功率 相关的电子技术资料,包括技术文档、应用笔记、电路设计、代码示例等,共 153 篇文章,持续更新中。

CMOS模拟开关工作原理

<P class=MsoNormal style="BACKGROUND: white; MARGIN: 0cm 0cm 0pt; TEXT-ALIGN: left; mso-pagination: widow-orphan" align=left><FONT size=3>开关在电路中起接通信号或断开信号的作用。最常见的可控开关是继电器,当给驱动继电器的驱动电路加高电平或低电平时,继电器就吸合或

数字容性隔离器的磁场抗扰度

<div> 数字容性隔离器的应用环境通常包括一些大型电动马达、发电机以及其他产生强电磁场的设备。暴露在这些磁场中,可引起潜在的数据损坏问题,因为电势(EMF,即这些磁场形成的电压)会干扰数据信号传输。由于存在这种潜在威胁,因此许多数字隔离器用户都要求隔离器具备高磁场抗扰度 (MFI)。许多数字隔离器技术都声称具有高 MFI,但容性隔离器却因其设计和内部结构拥有几乎无穷大的MFI。本文将对其设计进

256级DA驱动的调光计算(电阻系列化)

采用单片机的8位输出口,每个输出口接入1只电阻,其阻值为2n次方,由单片机8位数据控制电阻是否接入(并联),此电阻接入比较器并控制可控硅导通角,实现数字控制的调光。本软件是由8位数据对总电阻的计算。该技术还可应用于数控的模拟负载电路、电压输出等电路中。

模拟乘法器ADL5391的原理与应用

<span id="LbZY">简单介绍了ADI公司推出的新一代高性能模拟乘法器ADL5391的主要特性和工作原理。给出了基于ADL5391的宽带乘法器的典型应用电路,并对其进行了测试。最后设计了基于ADL5391的二倍频电路,测试结果表明该二倍频电路具有性能稳定、工作频带宽、测量精度高、抗干扰能力强等优点。<br /> <img alt="" src="http://dl.eeworm.com/

基于Multisim的高频功率放大器特性分析

multisim高频功率放大器特性分析

揭开∑—△ADC的神秘面纱

越柬越多的应用 例如过程控制、称重等 都需要高分辨率、高集成度和低价格的ADC。 新型&Sigma; .△转换技术恰好可以满足这些要求 然而, 很多设计者对于这种转换技术并不 分了解, 因而更愿意选用传统的逐次比较ADC &Sigma;.A转换器中的模拟部分非常简单(类似j 个Ibit ADC), 而数字部分要复杂得多, 按照功能町划分为数字滤波和抽取单元 由于更接近r 个数字器件,&Sigma;

基于SLPS的模拟电路故障样本自动获取技术

<p> <span style="color: rgb(0, 0, 0); font-family: 'Trebuchet MS', Arial; line-height: 21px; ">故障样本数据的获取是模拟电路故障诊断中最基本的步骤。为了实现短时间内多次进行故障注入、获取大量样本数据,提出了基于SLPS的样本数据自动获取技术。利用SLPS将PSpice与Matlab结合,采用Matlab

200mV~10V/0-24V电平单输入单输出模拟信号隔离变送器

转速传感器信号隔离变送器,正弦波整形 主要特性: &gt;&gt; 转速传感器信号直接输入,整形调理方波信号 &gt;&gt; 200mV峰值微弱信号的放大与整形 &gt;&gt; 正弦波、锯齿波信号输入,方波信号输出 &gt;&gt; 不改变原波形频率,响应速度快 &gt;&gt; 电源、信号:输入/输出 3000VDC三隔离 &gt;&gt; 供电电源:5V、12V、15V或24V直流单电源供

BP5611微小型数字气压计模块

BP5611 是一款采用MEMS 技术将高线性压力传感器与一个低功耗的24 位模数转换电路(ADC)集成于一体的数字气压传感器模块。该产品支持SPI 和I2C 总线传输协议,可与任何微处理器匹配工作。<br /> <img alt="" src="http://dl.eeworm.com/ele/img/177094-120302163356200.jpg" />

VISHAY ESTA功率电容选型指导

VISHAY ESTA功率电容选型指导.<br /> <img alt="" src="http://dl.eeworm.com/ele/img/177094-120320142409338.jpg" style="width: 227px; height: 181px" />

机翼极限环振荡仿真与计算

<span id="LbZY">机翼极限环振荡(LCO)是典型的非线性气动弹性问题,严重的会造成机翼的结构破坏。为了精确捕捉极限环振荡初始临界点,准确预测极限环的幅值,为机翼的设计提供准确的数据参考,本文综合考虑了气动与结构非线性的影响,提出了一种松耦合气动弹性仿真方法。在子迭代过程中分别采用LUSGS双时间推进和多步推进法交替求解气动和结构动力学方程;一种高效的插值技术应用于耦合界面数据的映射与

交流功率因数转换器

交流功率因数转换器 特点: 精确度0.25%满刻度 &plusmn;0.25o 多种输入,输出选择 输入与输出绝缘耐压2仟伏特/1分钟 冲击电压测试5仟伏特(1.2x50us) (IEC255-4,ANSI C37.90a/1974) 突波电压测试2.5仟伏特(0.25ms/1MHz) (IEC255-4) 尺寸小,稳定性高 主要规格: 精确度: 0.25% F.S. &plusmn;0.25&d

采用FemtoCharge技术的高速、高分辨率、低功耗的新一代ADC

先进的系统架构和集成电路设计技术,使得模数转换器 (ADC) 制造商得以开发出更高速率和分辨率,更低功耗的产品。这样,当设计下一代的系统时,ADC设计人员已经简化了很多系统平台的开发。例如,同时提高ADC采样率和分辨率可简化多载波、多标准软件无线电系统的设计。这些软件无线电系统需要具有数字采样非常宽频范围,高动态范围的信号的能力,以同步接收远、近端发射机的多种调制方式的高频信号。同样,先进的雷达系

CoolMOS导通电阻分析及与VDMOS的比较

<div> 为了克服传统功率MOS 导通电阻与击穿电压之间的矛盾,提出了一种新的理想器件结构,称为超级结器件或Cool2MOS ,CoolMOS 由一系列的P 型和N 型半导体薄层交替排列组成。在截止态时,由于p 型和n 型层中的耗尽区电场产生相互补偿效应,使p 型和n 型层的掺杂浓度可以做的很高而不会引起器件击穿电压的下降。导通时,这种高浓度的掺杂使器件的导通电阻明显降低。由于CoolMOS

基于小信号S参数的功率放大器设计

首先把功率管的小信号<em>S</em>参数制成S2P文件,然后将其导入ADS软件中,在ADS中搭建功率管的输入输出端口匹配电路,按照最大增益目标对整个电路进行优化,最后完成电路的设计。<br /> <img alt="" src="http://dl.eeworm.com/ele/img/177094-120213153I0440.jpg" />

16位10 MSPS ADC AD7626的单端转差分高速驱动电路

图1所示电路可将高频单端输入信号转换为平衡差分信号,用于驱动16位10 MSPS PulSAR&reg; ADC AD7626。该电路采用低功耗差分放大器ADA4932-1来驱动ADC,最大限度提升AD7626的高频输入信号音性能。此器件组合的真正优势在于低功耗、高性能<br /> <img alt="" src="http://dl.eeworm.com/ele/img/31-130201154

高速ADC模拟输入接口考虑

<div> 采用高输入频率、高速模数转换器(ADC)的系统设计是一项具挑战性的任务。ADC输入接口设计有6个主要条件:输入阻抗、输入驱动、带宽、通带平坦度、噪声和失真。<br /> <img alt="" src="http://dl.eeworm.com/ele/img/829019-130R2161410F1.jpg" style="width: 365px; height: 308px;

一种X波段频率合成器的设计方案

<p>   在非相参雷达测试系统中,频率合成技术是其中的关键技术.针对雷达测试系统的要求,介绍了一种用DDS激励PLL的X波段频率合成器的设计方案。文中给出了主要的硬件选择及具体电路设计,通过对该频率合成器的相位噪声和捕获时间的分析,及对样机性能的测试,结果表明该X波段频率合成器带宽为800 MHz、输出相位噪声优于-80 dBc/Hz@10 kHz、频率分辨率达0.1 MHz, 可满足雷达测试

高集成数字RF调制器解决方案

<div> Abstract: A digital RF modulator, an integrated solution that satisfies stringent DOCSIS RF-performancerequirements, takes advantage of modern technologies like high-performance wideband digita

扇形微带短截线型滤波器的设计_魏新泉

<div> 采用扇形微带短截线作为滤波器的基本单元,设计出具有宽频特性的滤波器,在微波平面电路的设计中有着良好的应用前景。通过设计扇形微带短截线单元的物理尺寸,能够实现特定频段的高选择性滤波器。用ADS 和HFSS 对这种新型滤波器与传统直形滤波器进行了特性对比,在特性方面,新型滤波器比传统滤波器具有更陡峭的过渡带和更宽的频带等优点;在结构方面,新型滤波器电路相对传统滤波器可以减少基板面积。