特征识别

共 44 篇文章
特征识别 相关的电子技术资料,包括技术文档、应用笔记、电路设计、代码示例等,共 44 篇文章,持续更新中。

脉搏波信号降噪和特征点识别研究

对脉搏波的完全分析是建立在含有少量噪声且较为清晰的脉搏波信号中,然而在采集脉搏波信号时容易受到多种干扰的影响,使其提取出来的脉搏波含有大量的噪声,因此降噪处理显得尤为必要。同时,脉搏波中含有人体生理病理信息,不同的人将表现为不同的特征,可以看出确定脉搏波特征点对于分析人体生理健康很有意义。针对信号去噪问题采用小波变换和多分辨率分析的方法,该方法在时域和频域都能表征信号局部信息的能力,且具有对信号具

一种改进的LPCC参数提取方法

<span style="color: rgb(0, 0, 0); font-family: 'Trebuchet MS', Arial; line-height: 21px; ">为了提高语音信号的识别率,提出了一种改进的LPCC参数提取方法。该方法先对语音信号进行预加重、分帧加窗处理,然后进行小波分解,在此基础上提取LPCC参数,从而构成新向量作为每帧信号的特征参数。最后采用高斯混合模型(GM

基于帧间差分与模板匹配相结合的运动目标检测

<span style="color: rgb(0, 0, 0); font-family: 'Trebuchet MS', Arial; line-height: 21px; ">基于图形处理器单元(GPU)提出了一种帧间差分与模板匹配相结合的运动目标检测算法。在CUDA-SIFT(基于统一计算设备架构的尺度不变特征变换)算法提取图像匹配特征点的基础上,优化随机采样一致性算法(RANSAC)剔除

基于Kalman滤波的多传感器信息融合研究

<span id="LbZY">多传感器信息融合是对多种信息的获取、表示及其内在联系进行综合处理和优化的技术。单一传感器只能获得环境或被测对象的部分信息段,多传感器信息融合后可以完善地、准确地反映环境特征。本文介绍多传感器数据融合的基本理论。数据融合是把来自不同传感器数据加以综合、相关、互联,提高定位和特征估计的精度。文章对Kalman融合算法进行仿真,对结果进行分析。验证算法的可行性。<br /