方法与技巧

共 387 篇文章
方法与技巧 相关的电子技术资料,包括技术文档、应用笔记、电路设计、代码示例等,共 387 篇文章,持续更新中。

基于采用分立元件设计的LC谐振放大器的设计方案

<span id="LbZY">介绍了基于采用分立元件设计的LC谐振放大器的设计方案与实现电路, 可用于通信接收机的前端电路,主要由衰减器、谐振放大器、AGC电路以及电源电路四部分组成。通过合理分配各级增益和多种措施提高抗干扰性,抑制噪声,具有中心频率容易调整、稳定性高的特点。电路经实际电路测试表明具有低功耗、高增益和较好的选择性。<br /> <img alt="" src="http://dl

基于Multisim的弱信号放大电路的设计与仿真

基于Multisim8的弱信号放大电路的设计与仿真

基于改进粒子群算法的舰船电力系统网络重构

<span id="LbZY">舰船电力系统网络重构可以看作为一个多目标、多约束、多时段、离散化的非线性规划最优问题。根据舰船电力系统特点,提出了一种改进的粒子群优化算法。在传统粒子群算法的基础上,运用混沌优化理论进行初始化粒子的初始种群,提升初始解质量;同时,引进遗传操作以改进粒子群算法易陷入局部极值的缺点。通过对典型的模型仿真表明,该算法具有更好的寻优性能,并且有效地提高了故障恢复的速度与精度

PSoC在时间谱采集电路中的应用

<span id="LbZY">在脉冲中子氧活化测井仪中,伽马射线时间谱的采集是仪器至为关键的部分。伽马射线时间谱采集电路常用的设计采用单片机与CPLD组合的方案,CPLD实现伽马射线计数,单片机则负责数据的处理、传输等工作。基于单片PSoC芯片的新方案,设计了伽马射线时间谱采集电路,实现了同样的功能。功能考核和高温考核证明,该方案有效、可靠,解决了高温CPLD价格昂贵且难以购买的问题,同时还能减

基于Multisim的计数器设计仿真

<span id="LbZY">计数器是常用的时序逻辑电路器件,文中介绍了以四位同步二进制集成计数器74LS161和异步二-五-十模值计数器74LS290为主要芯片,设计实现了任意模值计数器电路,并用Multisim软件进行了仿真。仿真验证了设计的正确性和可靠性,设计与仿真结果表明,中规模集成计数器可有效实现任意模值计数功能,并且虚拟仿真为电子电路的设计与开发提高了效率。<br /> <img a

AN-835高速ADC测试和评估

<div> 本应用笔记将介绍ADI公司高速转换器部门用来评估高速ADC的特征测试和生产测试方法。本应用笔记仅供参考,不能替代产品数据手册<br /> <img alt="" src="http://dl.eeworm.com/ele/img/829019-130R11P346227.jpg" style="width: 311px; height: 352px; " />

信号发生器输出幅值与输出阻抗的关系

信号发生器输出幅值与输出阻抗的关系

基于EEMD的故障微弱信号特征提取研究

<span style="color: rgb(0, 0, 0); font-family: 'Trebuchet MS', Arial; font-size: 11.818181991577148px; line-height: 21px; ">总体平均经验模式分解(EEMD)方法是一种先进的时频分析方法,非常适合于对非平稳故障微弱信号的分析处理。文中介绍了EEMD方法的原理与算法实现步骤,重点

5 Gsps高速数据采集系统的设计与实现

<p> <span style="color: rgb(0, 0, 0); font-family: 'Trebuchet MS', Arial; line-height: 21px; ">以某高速实时频谱仪为应用背景,论述了5 Gsps采样率的高速数据采集系统的构成和设计要点,着重分析了采集系统的关键部分高速ADC(analog to digital,模数转换器)的设计、系统采样时钟设计、模数

手机和mp3充电器原理与维修

手机和mp3充电器原理与维修

放大电路故障检修课件

<P>  一、电压放大电路故障检修技巧</P> <P>  二、功率放大电路故障检修技巧</P> <P>  三、显像管座板故障检修技巧</P> <P>  按元器件分类有:分立元件放大电路,集成运算放大电路。</P> <P>  按功能分类有:电压放大电路,功率放大电路,低频放大电路,高频放大电路等。</P> <P><IMG src="http://adm.elecfans.com/soft/Uploa

MT-019 DAC接口基本原理

本教程概述与内置基准电压源、模拟输出、数字输入和时钟驱动器的DAC接口电路相关的 一些重要问题。由于ADC也需要基准电压源和时钟,因此本教程中与这些主题相关的大多 数概念同样适用于ADC。

VMI技术研究综述

<span id="LbZY">虚拟机自省(Virtual Machine Introspection,VMI)技术充分利用虚拟机管理器的较高权限,可以实现在单独的虚拟机中部署安全工具对目标虚拟机进行监测,为进行各种安全研究工作提供了很好的解决途径,从而随着虚拟化技术的发展成为一种应用趋势。基于为更深入的理解和更好的应用VMI技术提供参考作用的目的,本文对VMI技术进行了分析研究。采用分析总结的方

基于N沟道MOS管H桥驱动电路设计与制作

基于N沟道MOS管H桥驱动电路设计与制作

PID控制原理详解

<p> 比例控制(P)是一种最简单的控制方式。其控制器的输出与输入误差信号成比例关系。根据设备有所不同,比例带一般为2~10%(温度控制)。但是,仅仅是P 控制的话,会产生下面将提到的off set (稳态误差),所以一般加上积分控制(I),以消除稳态误差。</p> <p> <img alt="" src="http://dl.eeworm.com/ele/img/319641-1201161

运算放大器增益稳定性第3部分-AC增益误差分析

<div> 本小节将回顾运算放大器增益带宽乘积 (GBWP) 即 G&times;BW 概念。在计算 AC闭环增益以前需要 GBWP 这一参数。首先,我们需要 GBWP(有时也称作GBP),用于计算运算放大器闭环截止频率。另外,我们在计算运算放大器开环响应的主极点频率 f0 时也需要 GBWP。在 f0 以下频率,第 2 部分的 DC 增益误差计算方法有效,因为运算放大器的开环增益为恒定;该增益

LC滤波器设计与制作

LC滤波器设计与制作,你懂得

横向Ka波段波导微带探针过渡的设计和优化

<span style="color: rgb(0, 0, 0); font-family: 'Trebuchet MS', Arial; font-size: 11.818181991577148px; line-height: 21px; ">介绍了一种横向Ka波段宽带波导-微带探针过渡的设计,基于有限元场分析软件Ansoft HFSS对该类过渡的设计方法进行了研究。最后给出了Ka波段内的优化

全球著名半导体厂家介绍

<p> 德州仪器(Texas Instruments),简称TI,是全球领先的半导体公司,为现实世界的信号处理提供创新的数字信号处理(DSP)及模拟器件技术。除半导体业务外,还提供包括传感与控制、教育产品和数字光源处理解决方案。TI总部位于美国得克萨斯州的达拉斯,并在25多个国家设有制造、设计或销售机构。</p> <p> <img alt="" src="http://dl.eeworm.co

放大器极零点与频率响应

放大器极零点与频率响应