幅相误差
共 47 篇文章
幅相误差 相关的电子技术资料,包括技术文档、应用笔记、电路设计、代码示例等,共 47 篇文章,持续更新中。
LC正弦波振荡电路基础知识
<P> LC 正弦波振荡电路</P>
<P> 如果将该电路作为选频网络和正反馈,再加上基本放大电路和稳幅电路就构成LC正弦波振荡电路。</P>
<P> 将电容和电感并联起来,在电容上施加一定电压后可产生零输入响应。这种响应在电容的电场和电感的磁场中交替转换便可形成正弦波振荡。</P>
<P> LC正弦波振荡电路的选频电路由电感和电容构成,可以产生高频振荡(>1MHz)。</P>
一种基于卡尔曼滤波的船载伺服系统随机误差处理方法
<span id="LbZY">针对测量船伺服系统存在随机误差的情况,为提高角误差的精度,基于著名的Singer模型建立了航天测量船伺服系统卡尔曼滤波算法,并通过计算机进行了实际测量数据的仿真实验。从实验仿真结果分析可看出,采用提出的算法,能够较大程度的减小角误差电压含有的随机误差,验证了本方法的有效性,达到了提高测量船测控精度的目的。<br />
<img alt="" src="http://
基于DHT11的实验室多点温湿度报警系统设计
DHT11相关文献
精密运算放大器自动校零
运算放大器集成电路,与其它通用<BR>集成电路一样,向低电压供电方向发<BR>展,普遍使用3V供电,目的是减少功<BR>耗和延长电池寿命。这样一来,运算放<BR>大器集成电路需要有更高的元件精度和<BR>降低误差容限。运算放大器一般位于电<BR>路系统的前端,对于时间和温度稳定性<BR>的要求是可以理解的,同时要改进电路<BR>结构和修调技术。当前,运算放大器是<BR>在封装后用激光修调和斩波器稳
高精度程控电压放大器
摘要<BR>本设计以VCA822、MSP430F2012、DAC7611芯片为核心,加以其它辅助电路实现对宽带电压放大器的电压放大倍数、输出电压进行精确控制。放大器的电压放大倍数从0.2倍到20倍以0.1倍为步进设定,输出电压从6mv到600mv以1mv为步进设定,控制误差不大于5%,放大器的带宽大于15MHz。键盘和显示电路实现人机交互,完成对电压放大倍数和输出电压的设定和显示。<BR>关键词:
3GHz射频信号源模块GR6710
产品概要: 3GHz射频信号源模块GR6710是软件程控的虚拟仪器模块,可以通过测控软件产生9kHz到3GHz的射频信号源和AM/FM/CW调制输出,具有CPCI、PXI、SPI、RS232、RS485和自定义IO接口。 产品描述: 3GHz射频信号源模块GR6710是软件程控的虚拟仪器模块,可以通过测控软件产生9kHz到3GHz的射频信号源和AM/FM/CW调制输出,还可以通过IQ选件实现其它任
高等模拟集成电路
近年来,随着集成电路工艺技术的进步,电子系统的构成发生了两个重要的变化: 一个是数字信号处理和数字电路成为系统的核心,一个是整个电子系统可以集成在一个芯片上(称为片上系统)。这些变化改变了模拟电路在电子系统中的作用,并且影响着模拟集成电路的发展。 数字电路不仅具有远远超过模拟电路的集成规模,而且具有可编程、灵活、易于附加功能、设计周期短、对噪声和制造工艺误差的抗扰性强等优点,因而大多数复杂系统以数
电路分析基础pdf
<P>电路分析基础电路分析基础Fundamentals of Electric CircuitsFundamentals of Electric Circuits多媒体教学课件多媒体教学课件北京理工大学北京理工大学Beijing Institute of TechnologyBeijing Institute of Technology</P>
<P>目录<BR>•第一章集总电路中电压
无功功率自动补偿控制器
1) 全数字化设计,交流采样,人机界面采用大屏幕点阵图形128X64 LCD中文液晶显示器。 2) 可实时显示A、B、C各相功率因数、电压、电流、有功功率、无功功率、电压总谐波畸变率、电流总谐波畸变率、电压3、5、7、9、11、13次谐波畸变率、电流3、5、7、9、 11、13次谐波畸变率频率、频率、电容输出显示及投切状态、报警等信息。 3) 设置参数中文提示,数字输入。 4) 电容器控制方案支持
基于Multisim的高通滤波器的设计与仿真分析
<span id="LbZY">高通滤波为实现高频信号能正常通过,而低于设定临界值的低频信号则被阻隔、减弱。但是阻隔、减弱的幅度则会依据不同的频率以及不同的滤波程序而改变。文中阐述了对电压转移函数推导分析及电路性能的要求,并利用Multisim仿真软件对其频幅特性的分析进行。<br />
<br />
<img alt="" src="http://dl.eeworm.com/ele/img/31
二极管抽运调Q固体激光器的设计方法研究
通过对速率方程的数值求解,得到二极管泵浦调<em>Q</em>固体激光器的性能参数,即由激光器的结构参数和泵浦参数,求解出激光器的输出参数。然后将其求解得到的输出与设计要求的激光器输出进行比较,由此对输入的结构参数和泵浦参数进行反复调整,直至最终输出参数满足设计要求的误差.<br />
<img alt="" src="http://dl.eeworm.com/ele/img/177094-120
BP8Y系列频敏变阻器资料
BP8Y系列频敏变阻器(以下简称变阻器)专用于电机功率1.5~200kW,频率为50Hz的YZR系列起重及冶金用三相异步电动机频繁操作条件下的起动及反接设备。该变阻器直接连接于异步电动机的转子回路中,<br />
不需另装接触器等短接设备;能使电动机获得接近恒转矩的机械特性,是极为理想的起动元件。<br />
<img alt="" src="http://dl.eeworm.com/ele/im
MEMS传感器的静止带宽测试
<div>
对于采用MEMS加速度计和陀螺仪的工业系统而言,优化带宽可能是关键考虑因素。这代表着精度(噪声)与响应时间之间的一种经典权衡。虽然多数MEMS传感器制造商都会给出典型带宽指标,往往还需要验证传感器或整个系统的实际带宽。在确定加速度计和陀螺仪的带宽特性时,一般需要使用振动台或其他机械激励源。要精确确定特性,需要全面了解应用于受测器件(DUT)的运动。在此过程中需要管理多种潜在误差源。在
全数字跟踪接收机的设计与实现
<span id="LbZY">随着软件无线电在中频领域的广泛应用,采用数字信号处理技术设计了基于FPGA全数字中频跟踪接收机并应用于遥感卫星天线接收系统中。给出了详细的理论说明和体统组成。该接收机结构简单,成本低,调试方便。在测试和实际应用中,该跟踪接收机输入信号的动态范围大,AGC和误差电压精度等指标较模拟接收机都有显著的提高。<br />
<img alt="" src="http://dl
宽带低相噪高分辨率频率合成器设计
<p>
利用锁相环(PLL)和YTO相结合,设计出一种频率合成器。实现了3~7 GHz的频率覆盖和低于0.2 Hz的频率分辨率。全频段相噪均在-108 dBc/Hz@10 kHz以下,具有较高的实用价值。<br />
<img alt="" src="http://dl.eeworm.com/ele/img/177094-12041Q6001TD.jpg" /></p>
<br />
反馈电容对VFB和CFB运算放大器的影响
在VFB运算放大器的反馈环路中使用一个电容是非常常见的做法,其目的是影响频率响应,就如在简单的单极点低通滤波器中一样,如下面的图1所示。结果将噪声增益绘制成了一幅波特图,用于分析稳定性和相位裕量<br />
<img alt="" src="http://dl.eeworm.com/ele/img/829019-130R216125L15.jpg" style="width: 501px; hei
用于图像分类的有偏特征采样方法
<span style="color: rgb(0, 0, 0); font-family: 'Trebuchet MS', Arial; line-height: 21px; ">为了模拟图像分类任务中待分类目标的可能分布,使特征采样点尽可能集中于目标区域,基于Yang的有偏采样算法提出了一种改进的有偏采样算法。原算法将目标基于区域特征出现的概率和显著图结合起来,计算用于特征采样的概率分布图,使
机翼极限环振荡仿真与计算
<span id="LbZY">机翼极限环振荡(LCO)是典型的非线性气动弹性问题,严重的会造成机翼的结构破坏。为了精确捕捉极限环振荡初始临界点,准确预测极限环的幅值,为机翼的设计提供准确的数据参考,本文综合考虑了气动与结构非线性的影响,提出了一种松耦合气动弹性仿真方法。在子迭代过程中分别采用LUSGS双时间推进和多步推进法交替求解气动和结构动力学方程;一种高效的插值技术应用于耦合界面数据的映射与
一种X波段频率合成器的设计方案
<p>
在非相参雷达测试系统中,频率合成技术是其中的关键技术.针对雷达测试系统的要求,介绍了一种用DDS激励PLL的X波段频率合成器的设计方案。文中给出了主要的硬件选择及具体电路设计,通过对该频率合成器的相位噪声和捕获时间的分析,及对样机性能的测试,结果表明该X波段频率合成器带宽为800 MHz、输出相位噪声优于-80 dBc/Hz@10 kHz、频率分辨率达0.1 MHz, 可满足雷达测试
了解ADF7021的AFC环路并为实现最小前同步码长度而进行优化
<div>
无线电通信网络中的远程收发器使用自己的独立时钟源。因此,这些收发器容易产生频率误差。当发射机启动通信链路时,关联的接收机需要在数据包的前同步码阶段校正这些误差,以确保正确的解调<br />
<img alt="" src="http://dl.eeworm.com/ele/img/829019-130R21619121G.jpg" />