功率晶闸管
共 6,012 篇文章
功率晶闸管 相关的电子技术资料,包括技术文档、应用笔记、电路设计、代码示例等,共 6012 篇文章,持续更新中。
VISHAY大功率厚膜电阻选型指导
想要快速选型大功率厚膜电阻?这份VISHAY官方选型指导详细解析了性能参数、应用场景及选型逻辑,帮助工程师高效解决高功率电路设计中的散热与稳定性难题。
变压器功率计算方法
涵盖变压器功率计算的核心方法,解析0.65与0.8系数的实际应用逻辑,结合电工速算口诀提升工程效率。从公式推导到实际案例,提供可直接应用的计算技巧。
48V5kW工频电路资料
一套完整的48V5kW工频电路设计资料,涵盖大功率逆变器的原理分析与工业应用方案,适合电力电子工程师参考与实践。
[英飞凌]IGBT模块驱动电路
适用于汽车电子控制系统开发,基于1ED020I12FA设计的IGBT模块驱动电路方案,提供高效、稳定的功率控制实现。广泛用于新能源汽车电机驱动和电力电子变换器设计中。
[英飞凌]用于辅助系统的小功率模块
适用于HEV/EV辅助系统的英飞凌小功率模块,提供高可靠性与紧凑设计,可直接用于新能源汽车电气架构中,经过多个项目验证的成熟方案。
[英飞凌]汽车用IGBT门级驱动器
难得一见的英飞凌汽车级IGBT门级驱动器技术资料,涵盖功能安全设计与电动混动系统应用,适合功率电子工程师深入研究。
[英飞凌]IGBT驱动电路设计
适用于电动汽车电机控制系统开发,提供具备有源电压钳位功能的IGBT驱动电路设计方案,提升系统稳定性和效率。适用于高功率逆变器应用,优化开关性能与电磁干扰控制。
[英飞凌]配电系统功率半导体应用
难得一见的英飞凌配电系统功率半导体应用全解析,涵盖多场景下器件选型与性能优化方案,适合汽车电子工程师深入研读。
[英飞凌]汽车功率分配技术
适用于汽车电子系统设计与优化的功率分配方案,提供高效能、低损耗的电源管理技术,广泛应用于新能源汽车及智能驾驶系统中。支持多路供电与负载均衡,提升整车电气性能与可靠性。
[英飞凌]HybridPack电动汽车功率模块
适用于电动汽车电机驱动系统开发,HybridPack功率模块集成了高可靠性与高效能,支持混合动力和纯电车型的功率转换需求。在新能源汽车领域广泛应用,提升整车能效与稳定性。
光伏系统研究
从基础原理到实际应用,循序渐进讲解光伏系统的运行机制与优化方法。重点解析变步长最大功率跟踪算法在提升系统效率中的作用,适合对新能源技术感兴趣的开发者和研究者。
Two-Step Parameter Extraction Procedure
帮助工程师高效提取IGBT与功率二极管模型参数,提升仿真精度与开关损耗预测能力。采用两步法实现高准确度建模,适用于多种工况下的电力电子设计优化。
ADL5906
ADL5906是一款高性能射频功率检波器,采用先进的模拟信号处理技术,实现高精度的RF信号强度检测。支持宽频率范围与低功耗设计,适用于通信和测试测量系统中的实时功率监控。
自耦变压器分析与设计
涵盖自耦变压器从原理到设计的完整技术解析,重点分析低频功率特性与实际应用方法,适合电力电子领域工程人员参考。
开关型磁阻电动机调速控制技术
开关磁阻电机是在交流调速技术发展的80年代,出现的一种简单的新型电机,它结构非常简单,起动性能好,没有电流冲击、效率高,由其构成的调速系统兼有异步电动机变频调速和直流电动机调速宽的优点,其运行性能和经济指标比普通的交流调速系统,甚至比晶闸管-直流电动机都好,加上现代电力电子学技术的发展,被认为是在电动汽车中一种极具潜力的驱动方式。
电弧火箭电源调理单元的研究
研究了电孤火箭发动机对电源调理单元
(PCU) 的输出特性要求.基于逆变电源脉宽调制技术与峰值电流型控制原理,以MOSFET 为主功率器件,研制
了一台电弧火箭电源调理单元.给出了Arcjet 工作时的实验数据通过增加PCU 输出电压的闭环反馈电路,可
以使PCU 的输出外特性呈现正阻性,保证电弧的稳定燃烧
RF电阻衰减器设计
基于射频电路设计原理,采用分压式电阻结构实现信号衰减,精准控制阻抗匹配与功率损耗。适用于高频电路中的信号调节与系统优化。
微机控制晶闸管投切电容器
微机控制晶闸管投切电容器补偿装置以80c320单片机为控制核心,采用新颖的快速无功功率检测方法和独特的晶闸管控制技术,实现了对多组电容器快速自动分级投切,可满足低压配电网基波无功补偿的快速性和实时性要求。介绍了该装置土回路控制方式和控制电路构成,并通过模拟负荷投切试验中的有关数据验证了其投切的正确性。
晶闸管软起动移相原理
掌握晶闸管软起动的移相控制原理,帮助工程师理解如何通过调节触发角实现电机平稳启动。适用于工业自动化与电机控制领域,提升对电力电子控制技术的实战应用能力。
微波谐振器
在微波领域中,具有储能和选频特性的元件称为微波谐振器,它相当于低频电路中的LC振荡回路,它是一种用途广泛的微波元件。
低频LC振荡回路是一个集中参数系统,随着频率的升高,LC回路出现一系列缺点,主要是,①损耗增加。这是因为导体损耗、介质损耗及辐射损耗均随频率的升高而增大,从而导致品质因数降低,选频特性变差。②尺寸变小。LC回路的谐振频率 ,可见为了提高 必须减少LC数值,回路尺寸相应地需要