虫虫首页|资源下载|资源专辑|精品软件
登录|注册

偏压

  • OrCAD/PSpice9偏压点和直流扫描分析(欧姆定律)

    OrCAD/PSpice9偏压点和直流扫描分析(欧姆定律)一、学习目的:1、使用电路绘制程序Capture绘制所须要的电路图2、学习偏压点分析

    标签: PSpice OrCAD 偏压 直流扫描分析

    上传时间: 2013-04-24

    上传用户:xfbs821

  • 雪崩光电二极管APD的偏压产生电路。偏压调节范围30V~71V。

    雪崩光电二极管APD的偏压产生电路。偏压调节范围30V~71V。

    标签: APD 偏压 30 71

    上传时间: 2015-12-10

    上传用户:xuanchangri

  • 可以用来求复合半导体能带随着偏压的变化情况

    可以用来求复合半导体能带随着偏压的变化情况,可以考虑到interface charges

    标签: 复合半导体 偏压 变化

    上传时间: 2016-06-17

    上传用户:JIUSHICHEN

  • 采用国半的PWM控制器提升高功率密度砖电源模块的性能

    –越来越高的效率及功率密度的要求–输出电压必须越来越低,输出电流越来越高–可以支持预偏压操作–快速的瞬态响应

    标签: PWM 国半 控制器 性能

    上传时间: 2013-06-15

    上传用户:wmwai1314

  • 基于FPGA的GPS中频数字接收机

    本文进行了基于FPGA的GPS直序伪码扩频接收机的设计和数字化硬件实现。论文首先对GPS卫星导航定位系统进行了分析,并对与数字化接收机直接相关联的GPS信号中频部分结合实际系统要求进行了设计和分析,由此确定了数字化伪码捕获跟踪接收机研制的具体要求,之后完成了接收机中频数字化方案设计。同时对伪码捕获跟踪后端的载波捕获跟踪的实现方案进行了描述和分析。最后利用EDA工具在FPGA芯片上实现了GPS数字化接收机的伪码捕获跟踪。 受工作环境的制约,GPS卫星接收机系统首先表现为功率受限系统,接收机必须满足在低信噪比条件下工作。同时接收机与卫星间高动态产生的多普勒频率,给接收机实现快速捕获带来了难度。通过仿真分析,综合了实现难度和性能两方面因素,针对小信噪比工作条件提出了改进型的序贯伪码捕获实施方案。同时按照捕获概率和时间的要求,对接收机偏压、上、下门限、NCO增益等进行了设计和仿真分析,确定了捕获的数字化实现方案,伪码跟踪采用超前滞后环方案。捕获完成后可使本地伪码与接收伪码的相对误差保持在±1/4码元范围内,而跟踪环路的跟踪范围为±4/3码元,保证了捕获到跟踪的可靠衔接,同时采用可变环路带宽措施解决了跟踪速度和精度的矛盾。 在数字化实现设计中,给出了详细的数字化实现方案和分析,这样在保证工作精度的同时尽量减少硬件资源的开销,利用EDA工具,采用Veilog设计语言在Xilinx的VirtexII系列的XC2V500fg256的FPGA上完成数字化接收机伪码捕获跟踪的实现,并在其开发平台上对数字化接收机进行了仿真验证,在给定的工作条件下达到了设计性能和指标要求。

    标签: FPGA GPS 中频 数字接收机

    上传时间: 2013-04-24

    上传用户:15510133306

  • 针对高速应用的电流回授运算放大器

    讯号路径设计讲座(9)针对高速应用的电流回授运算放大器电流回授运算放大器架构已成为各类应用的主要解决方案。该放大器架构具有很多优势,并且几乎可实施于任何需要运算放大器的应用当中。电流回授放大器没有基本的增益频宽产品的局限,随着讯号振幅的增加,而频宽损耗依然很小就证明了这一点。由于大讯号具有极小的失真,所以在很高的频率情况下这些放大器都具有极佳的线性度。电流回授放大器在很宽的增益范围内的频宽损耗很低,而电压回授放大器的频宽损耗却随着增益的增加而增加。准确地说就是电流回授放大器没有增益频宽产品的限制。当然,电流回授放大器也不是无限快的。变动率受制于晶体管本身的速度限制(而非内部偏置(压)电流)。这可以在给定的偏压电流下实现更大的变动率,而无需使用正回授和其它可能影响稳定性的转换增强技术。那么,我们如何来建立这样一个奇妙的电路呢?电流回授运算放大器具有一个与差动对相对的输入缓冲器。输入缓冲器通常是一个射极追随器或类似的器件。非反向输入是高阻抗的,而缓冲器的输出(即放大器的反向输入)是低阻抗的。相反,电压回授放大器的2个输入均是高阻抗的。电流回授运算放大器输出的是电压,而且与透过称为互阻抗Z(s)的复变函数流出或流入运算放大器的反向输入端的电流有关。在直流电情况下,互阻抗很高(与电压回授放大器类似),并且随着频率的增加而单极滚降。

    标签: 电流 运算放大器

    上传时间: 2013-10-19

    上传用户:黄蛋的蛋黄

  • MSP430系列flash型超低功耗16位单片机

    MSP430系列flash型超低功耗16位单片机MSP430系列单片机在超低功耗和功能集成等方面有明显的特点。该系列单片机自问世以来,颇受用户关注。在2000年该系列单片机又出现了几个FLASH型的成员,它们除了仍然具备适合应用在自动信号采集系统、电池供电便携式装置、超长时间连续工作的设备等领域的特点外,更具有开发方便、可以现场编程等优点。这些技术特点正是应用工程师特别感兴趣的。《MSP430系列FLASH型超低功耗16位单片机》对该系列单片机的FLASH型成员的原理、结构、内部各功能模块及开发方法与工具作详细介绍。MSP430系列FLASH型超低功耗16位单片机 目录  第1章 引 论1.1 MSP430系列单片机1.2 MSP430F11x系列1.3 MSP430F11x1系列1.4 MSP430F13x系列1.5 MSP430F14x系列第2章 结构概述2.1 引 言2.2 CPU2.3 程序存储器2.4 数据存储器2.5 运行控制2.6 外围模块2.7 振荡器与时钟发生器第3章 系统复位、中断及工作模式3.1 系统复位和初始化3.1.1 引 言3.1.2 系统复位后的设备初始化3.2 中断系统结构3.3 MSP430 中断优先级3.3.1 中断操作--复位/NMI3.3.2 中断操作--振荡器失效控制3.4 中断处理 3.4.1 SFR中的中断控制位3.4.2 中断向量地址3.4.3 外部中断3.5 工作模式3.5.1 低功耗模式0、1(LPM0和LPM1)3.5.2 低功耗模式2、3(LPM2和LPM3)3.5.3 低功耗模式4(LPM4)22 3.6 低功耗应用的要点23第4章 存储空间4.1 引 言4.2 存储器中的数据4.3 片内ROM组织4.3.1 ROM 表的处理4.3.2 计算分支跳转和子程序调用4.4 RAM 和外围模块组织4.4.1 RAM4.4.2 外围模块--地址定位4.4.3 外围模块--SFR4.5 FLASH存储器4.5.1 FLASH存储器的组织4.5.2 FALSH存储器的数据结构4.5.3 FLASH存储器的控制寄存器4.5.4 FLASH存储器的安全键值与中断4.5.5 经JTAG接口访问FLASH存储器39第5章 16位CPU5.1 CPU寄存器5.1.1 程序计数器PC5.1.2 系统堆栈指针SP5.1.3 状态寄存器SR5.1.4 常数发生寄存器CG1和CG25.2 寻址模式5.2.1 寄存器模式5.2.2 变址模式5.2.3 符号模式5.2.4 绝对模式5.2.5 间接模式5.2.6 间接增量模式5.2.7 立即模式5.2.8 指令的时钟周期与长度5.3 指令组概述5.3.1 双操作数指令5.3.2 单操作数指令5.3.3 条件跳转5.3.4 模拟指令的简短格式5.3.5 其他指令第6章 硬件乘法器6.1 硬件乘法器6.2 硬件乘法器操作6.2.1 无符号数相乘(16位×16位、16位×8位、8位×16位、8位×8位)6.2.2 有符号数相乘(16位×16位、16位×8位、8位×16位、8位×8位)6.2.3 无符号数乘加(16位×16位、16位×8位、8位×16位、8位×8位)6.2.4 有符号数乘加(16位×16位、16位×8位、8位×16位、8位×8位)6.3 硬件乘法器寄存器6.4 硬件乘法器的软件限制6.4.1 寻址模式6.4.2 中断程序6.4.3 MACS第7章 基础时钟模块7.1 基础时钟模块7.2 LFXT1与XT27.2.1 LFXT1振荡器7.2.2 XT2振荡器7.2.3 振荡器失效检测7.2.4 XT振荡器失效时的DCO7.3 DCO振荡器7.3.1 DCO振荡器的特性7.3.2 DCO调整器7.4 时钟与运行模式7.4.1 由PUC启动7.4.2 基础时钟调整7.4.3 用于低功耗的基础时钟特性7.4.4 选择晶振产生MCLK7.4.5 时钟信号的同步7.5 基础时钟模块控制寄存器7.5.1 DCO时钟频率控制7.5.2 振荡器与时钟控制寄存器7.5.3 SFR控制位第8章 输入输出端口8.1 引 言8.2 端口P1、P28.2.1 P1、P2的控制寄存器8.2.2 P1、P2的原理8.2.3 P1、P2的中断控制功能8.3 端口P3、P4、P5和P68.3.1 端口P3、P4、P5和P6的控制寄存器8.3.2 端口P3、P4、P5和P6的端口逻辑第9章 看门狗定时器WDT9.1 看门狗定时器9.2 WDT寄存器9.3 WDT中断控制功能9.4 WDT操作第10章 16位定时器Timer_A10.1 引 言10.2 Timer_A的操作10.2.1 定时器模式控制10.2.2 时钟源选择和分频10.2.3 定时器启动10.3 定时器模式10.3.1 停止模式10.3.2 增计数模式10.3.3 连续模式10.3.4 增/减计数模式10.4 捕获/比较模块10.4.1 捕获模式10.4.2 比较模式10.5 输出单元10.5.1 输出模式10.5.2 输出控制模块10.5.3 输出举例10.6 Timer_A的寄存器10.6.1 Timer_A控制寄存器TACTL10.6.2 Timer_A寄存器TAR10.6.3 捕获/比较控制寄存器CCTLx10.6.4 Timer_A中断向量寄存器10.7 Timer_A的UART应用 第11章 16位定时器Timer_B11.1 引 言11.2 Timer_B的操作11.2.1 定时器长度11.2.2 定时器模式控制11.2.3 时钟源选择和分频11.2.4 定时器启动11.3 定时器模式11.3.1 停止模式11.3.2 增计数模式11.3.3 连续模式11.3.4 增/减计数模式11.4 捕获/比较模块11.4.1 捕获模式11.4.2 比较模式11.5 输出单元11.5.1 输出模式11.5.2 输出控制模块11.5.3 输出举例11.6 Timer_B的寄存器11.6.1 Timer_B控制寄存器TBCTL11.6.2 Timer_B寄存器TBR11.6.3 捕获/比较控制寄存器CCTLx11.6.4 Timer_B中断向量寄存器第12章 USART通信模块的UART功能12.1 异步模式12.1.1 异步帧格式12.1.2 异步通信的波特率发生器12.1.3 异步通信格式12.1.4 线路空闲多机模式12.1.5 地址位多机通信格式12.2 中断和中断允许12.2.1 USART接收允许12.2.2 USART发送允许12.2.3 USART接收中断操作12.2.4 USART发送中断操作12.3 控制和状态寄存器12.3.1 USART控制寄存器UCTL12.3.2 发送控制寄存器UTCTL12.3.3 接收控制寄存器URCTL12.3.4 波特率选择和调整控制寄存器12.3.5 USART接收数据缓存URXBUF12.3.6 USART发送数据缓存UTXBUF12.4 UART模式,低功耗模式应用特性12.4.1 由UART帧启动接收操作12.4.2 时钟频率的充分利用与UART的波特率12.4.3 多处理机模式对节约MSP430资源的支持12.5 波特率计算 第13章 USART通信模块的SPI功能13.1 USART同步操作13.1.1 SPI模式中的主模式13.1.2 SPI模式中的从模式13.2 中断与控制功能 13.2.1 USART接收/发送允许位及接收操作13.2.2 USART接收/发送允许位及发送操作13.2.3 USART接收中断操作13.2.4 USART发送中断操作13.3 控制与状态寄存器13.3.1 USART控制寄存器13.3.2 发送控制寄存器UTCTL13.3.3 接收控制寄存器URCTL13.3.4 波特率选择和调制控制寄存器13.3.5 USART接收数据缓存URXBUF13.3.6 USART发送数据缓存UTXBUF第14章 比较器Comparator_A14.1 概 述14.2 比较器A原理14.2.1 输入模拟开关14.2.2 输入多路切换14.2.3 比较器14.2.4 输出滤波器14.2.5 参考电平发生器14.2.6 比较器A中断电路14.3 比较器A控制寄存器14.3.1 控制寄存器CACTL114.3.2 控制寄存器CACTL214.3.3 端口禁止寄存器CAPD14.4 比较器A应用14.4.1 模拟信号在数字端口的输入14.4.2 比较器A测量电阻元件14.4.3 两个独立电阻元件的测量系统14.4.4 比较器A检测电流或电压14.4.5 比较器A测量电流或电压14.4.6 测量比较器A的偏压14.4.7 比较器A的偏压补偿14.4.8 增加比较器A的回差第15章 模数转换器ADC1215.1 概 述15.2 ADC12的工作原理及操作15.2.1 ADC内核15.2.2 参考电平15.3 模拟输入与多路切换15.3.1 模拟多路切换15.3.2 输入信号15.3.3 热敏二极管的使用15.4 转换存储15.5 转换模式15.5.1 单通道单次转换模式15.5.2 序列通道单次转换模式15.5.3 单通道重复转换模式15.5.4 序列通道重复转换模式15.5.5 转换模式之间的切换15.5.6 低功耗15.6 转换时钟与转换速度15.7 采 样15.7.1 采样操作15.7.2 采样信号输入选择15.7.3 采样模式15.7.4 MSC位的使用15.7.5 采样时序15.8 ADC12控制寄存器15.8.1 控制寄存器ADC12CTL0和ADC12CTL115.8.2 转换存储寄存器ADC12MEMx15.8.3 控制寄存器ADC12MCTLx15.8.4 中断标志寄存器ADC12IFG.x和中断允许寄存器ADC12IEN.x15.8.5 中断向量寄存器ADC12IV15.9 ADC12接地与降噪第16章 FLASH型芯片的开发16.1 开发系统概述16.1.1 开发技术16.1.2 MSP430系列的开发16.1.3 MSP430F系列的开发16.2 FLASH型的FET开发方法16.2.1 MSP430芯片的JTAG接口16.2.2 FLASH型仿真工具16.3 FLASH型的BOOT ROM16.3.1 标准复位过程和进入BSL过程16.3.2 BSL的UART协议16.3.3 数据格式16.3.4 退出BSL16.3.5 保护口令16.3.6 BSL的内部设置和资源附录A 寻址空间附录B 指令说明B.1 指令汇总B.2 指令格式B.3 不增加ROM开销的模拟指令B.4 指令说明(字母顺序)B.5 用几条指令模拟的宏指令附录C MSP430系列单片机参数表附录D MSP430系列单片机封装形式附录E MSP430系列器件命名

    标签: flash MSP 430 超低功耗

    上传时间: 2014-04-28

    上传用户:sssnaxie

  • 常规风华中高压产品承认书

    电容器及介质种类: ※高频类: 此类介质材料的电容器为Ⅰ类电容器,包括通用型高频COG、COH电容器和温度补偿型高频HG、LG、PH、RH、SH、TH、UJ、SL电容器。其中COG、COH电容器电性能最稳定,几乎不随温度、电压和时间的变化而变化,适用于低损耗,稳定性要求高的高频电路,HG、LG、PH、RH、SH、TH、UJ、SL电容器容量随温度变化而相应变化,适用于低损耗、温度补偿型电路中。 ※ X7R、X5R:此类介质材料的电容器为Ⅱ类电容器,具有较高的介电常数,容量比Ⅰ类电容器高,具有较稳定的温度特性,适用于容量范围广,稳定性要求不高的电路中,如隔直、耦合、旁路、鉴频等电路中。 ※Y5V:此类介质材料的电容器为Ⅱ类电容器,是所有电容器中介电常数最大的电容器,但其容量稳定性较差,对温度、电压等条件较敏感,适用于要求大容量,温度变化不大的电路中。 ※Z5U:此类介质材料的电容器为Ⅱ类电容器,其温度特性介于X7R和Y5V之间,容量稳定性较差,对温度、电压等条件较敏感,适用于要求大容量,使用温度范围接近于室温的旁路,耦合等,低直流偏压的电路中。

    标签: 风华 产品承认书

    上传时间: 2013-11-05

    上传用户:后时代明明

  • 玻璃中量子点之间电子的共振隧穿.摘要:在建立玻璃中阻容耦合双量子点模型的基础

    玻璃中量子点之间电子的共振隧穿.摘要:在建立玻璃中阻容耦合双量子点模型的基础,通过分析双量子点的静电能和化学势,讨论了化学势随外加偏压的变化和共振隧穿现.随外加偏压的增大,当双量子点2个能级的化学势相等时发生共振隧穿现象,在 特性曲线上呈现电流峰.玻璃中不同间距的量子点用不同大小的耦合电容来表示.随着玻璃中2个量子点之间耦合电容的增大,2个量子点发生共振隧穿所需要的外加偏压随之增大.

    标签: 玻璃 量子点 共振 模型

    上传时间: 2014-01-11

    上传用户:xymbian

  • ht1621中文Datasheet HOLTEK HT1621 LCD驱动器 特性 * 工作电压2.4 5.2V * 内嵌256KHz RC 振荡器 * 可外接32KHz晶片或256KHz频

    ht1621中文Datasheet HOLTEK HT1621 LCD驱动器 特性 * 工作电压2.4 5.2V * 内嵌256KHz RC 振荡器 * 可外接32KHz晶片或256KHz频率源输入 * 可选1/2 或1/3 偏压和1/2 1/3 或1/4 的占空比 * 片内时基频率源

    标签: KHz 1621 Datasheet 256

    上传时间: 2014-07-14

    上传用户:Divine