虫虫首页|资源下载|资源专辑|精品软件
登录|注册

Shortening

  • computes the Shortening-signal-to-noise ratio in dB,tail energy in dB and the effective channel imp

    computes the Shortening-signal-to-noise ratio in dB,tail energy in dB and the effective channel impulse response

    标签: Shortening-signal-to-noise the effective computes

    上传时间: 2015-10-30

    上传用户:libinxny

  • Fast Channel Shortening using Frequency Domain

    Fast Channel Shortening using Frequency Domain

    标签: Shortening Frequency Channel Domain

    上传时间: 2017-06-19

    上传用户:lijinchuan

  • DAKOTA

    Computational models are commonly used in engineering design and scientific discovery activities for simulating complex physical systems in disciplines such as fluid mechanics, structural dynamics, heat transfer, nonlinear structural mechanics, shock physics, and many others. These simulators can be an enormous aid to engineers who want to develop an understanding and/or predictive capability for complex behaviors typically observed in the corresponding physical systems. Simulators often serve as virtual prototypes, where a set of predefined system parameters, such as size or location dimensions and material properties, are adjusted to improve the performance of a system, as defined by one or more system performance objectives. Such optimization or tuning of the virtual prototype requires executing the simulator, evaluating performance objective(s), and adjusting the system parameters in an iterative, automated, and directed way. System performance objectives can be formulated, for example, to minimize weight, cost, or defects; to limit a critical temperature, stress, or vibration response; or to maximize performance, reliability, throughput, agility, or design robustness. In addition, one would often like to design computer experiments, run parameter studies, or perform uncertainty quantification (UQ). These approaches reveal how system performance changes as a design or uncertain input variable changes. Sampling methods are often used in uncertainty quantification to calculate a distribution on system performance measures, and to understand which uncertain inputs contribute most to the variance of the outputs. A primary goal for Dakota development is to provide engineers and other disciplinary scientists with a systematic and rapid means to obtain improved or optimal designs or understand sensitivity or uncertainty using simulationbased models. These capabilities generally lead to improved designs and system performance in earlier design stages, alleviating dependence on physical prototypes and testing, Shortening design cycles, and reducing product development costs. In addition to providing this practical environment for answering system performance questions, the Dakota toolkit provides an extensible platform for the research and rapid prototyping of customized methods and meta-algorithms

    标签: Optimization and Uncertainty Quantification

    上传时间: 2016-04-08

    上传用户:huhu123456