虫虫首页|资源下载|资源专辑|精品软件
登录|注册

Secrecy

  • The literature of cryptography has a curious history. Secrecy, of course, has always played a centra

    The literature of cryptography has a curious history. Secrecy, of course, has always played a central role, but until the First World War, important developments appeared in print in a more or less timely fashion and the field moved forward in much the same way as other specialized disciplines. As late as 1918, one of the most influential cryptanalytic papers of the twentieth century, William F. Friedman’s monograph The Index of Coincidence and Its Applications in Cryptography, appeared as a research report of the private Riverbank Laboratories [577]. And this, despite the fact that the work had been done as part of the war effort. In the same year Edward H. Hebern of Oakland, California filed the first patent for a rotor machine [710], the device destined to be a mainstay of military cryptography for nearly 50 years.

    标签: cryptography literature has Secrecy

    上传时间: 2016-12-07

    上传用户:fxf126@126.com

  • Fundamental Limits on a Class of Secure

    Abstract—In the future communication applications, users may obtain their messages that have different importance levels distributively from several available sources, such as distributed storage or even devices belonging to other users. This scenario is the best modeled by the multilevel diversity coding systems (MDCS). To achieve perfect (information-theoretic) Secrecy against wiretap channels, this paper investigates the fundamental limits on the secure rate region of the asymmetric MDCS (AMDCS), which include the symmetric case as a special case. Threshold perfect Secrecy is added to the AMDCS model. The eavesdropper may have access to any one but not more than one subset of the channels but know nothing about the sources, as long as the size of the subset is not above the security level. The question of whether superposition (source separation) coding is optimal for such an AMDCS with threshold perfect Secrecy is answered. A class of secure AMDCS (S-AMDCS) with an arbitrary number of encoders is solved, and it is shown that linear codes are optimal for this class of instances. However, in contrast with the secure symmetric MDCS, superposition is shown to be not optimal for S-AMDCS in general. In addition, necessary conditions on the existence of a Secrecy key are determined as a design guideline.

    标签: Fundamental Limits Secure Class on of

    上传时间: 2020-01-04

    上传用户:kddlas