虫虫首页|资源下载|资源专辑|精品软件
登录|注册

电机转速

  • 基于滑模变结构控制的永磁同步电机伺服系统.rar

    高性能伺服控制系统日益广泛地应用于现代工业、家用电器和国防等各个领域。采用先进控制策略和全数字控制技术的永磁同步电机伺服系统,已成为高性能伺服系统发展的主流方向。应用在交流伺服系统上的背景技术不断进步,同时市场对伺服系统性能、成本及自适应能力的要求也不断提高。 本文从详细分析了永磁同步电机的数学模型和矢量控制的基本原理,选取了基于id=0转子磁场定向矢量控制方式,采用电压空间矢量(SVPWM)调制技术,建立了位置、转速、电流三闭环控制的永磁同步电机伺服系统。针对伺服系统在运行过程中参数变化及负载扰动等问题,深入分析了连续与离散系统滑模变结构控制器设计的基本原则和方法,将滑模变结构控制与矢量控制相结合,改进了基于趋近率的单段滑模面变结构控制,设计了适用于矢量控制位置伺服系统的分段式滑模变结构控制器。在Matlab/Simulink7.1仿真环境和以Freescale MC56F8346DSP为核心的实验系统平台进行了详尽的仿真和实验研究。结果表明本系统满足高性能伺服控制系统的基本要求,滑模变结构控制能够有效应用于矢量控制伺服系统并提高其鲁棒性。

    标签: 滑模变结构 控制 伺服系统

    上传时间: 2013-07-18

    上传用户:yph853211

  • 基于DSP和FPGA的异步电机矢量控制系统的研究.rar

    矢量控制作为一种先进的控制策略,是在电机统一理论、机电能量转换和坐标变换理论的基础上发展起来的,具有先进性、新颖性和实用性的特点。它是以交流电动机的双轴理论为依据,将定子电流矢量分解为按转子磁场定向的两个直流分量:一个分量与转子磁链矢量重合,称为励磁电流分量;另一个分量与转子磁链矢量垂直,称为转矩电流分量。通过控制定子电流矢量在旋转坐标系的位置及大小,即可控制励磁电流分量和转矩电流分量的大小,实现像直流电动机那样对磁场和转矩的解耦控制。本文研究的是以TMS320LF2407ADSP和FPGA为控制核心的矢量控制变频调速系统。 分析了脉宽调制和矢量控制的原理与实现方法,从而建立了异步电动机的数学模型。对于矢量控制,分析了矢量控制的基本原理和控制算法,推导了三相坐标系、两相静止与旋转坐标系下的电机基本方程和矢量控制基本公式。同时在进行相应的坐标变换以后,得到了间接磁场定向型变频调速系统的矢量控制图,并结合TMS320LF2407ADSP完成了具体的实现方法,根据矢量控制的基本原理,设计了一种基于DSP和FPGA的SVPWM冗余系统。 在硬件方面,以TMS320LF2407ADSP和EP1C12Q240FPGA为控制器,两者之间通过双口RAMIDT7130完成数据的交换,并能在一方失控时另一方立即产生SVPWM波形。同时完成无线遥控、速度给定、数据显示以及电流、速度检测和保护等功能,也对变频调速系统的主电路、电源电路、FPGA配置电路、无线遥控电路、LCD显示电路、保护电路、电流和转速检测电路作了简单的介绍。在软件方面,给出了基于DSP的矢量控制系统软件流程图,并用C语言进行了编程。用硬件描述语言Verilog对FPGA进行了编程,并给出了相关的仿真波形。MATLAB仿真结果表明,本文研究的调速系统的矢量控制算法是成功的,并实现了对电机的高性能控制。

    标签: FPGA DSP 异步电机

    上传时间: 2013-07-09

    上传用户:jogger_ding

  • 基于BP神经网络的永磁同步电机自适应控制研究.rar

    永磁同步电机(Permanent Magnet Synchronous Motor)因功率密度大、效率高、过载能力强、控制性能优良等优点,在中小容量调速系统和高精度调速场合发展迅速。但由于永磁同步电机的磁场具有独特的交叉耦合和交叉饱和现象,且其控制系统是一个强非线性、时变和多变量系统,要实现高精度调速就需对其控制策略进行深入研究。 永磁同步电机调速系统中,位置传感器的存在使得系统成本增加、结构复杂、可靠性降低,所以永磁同步电机的无位置传感器控制成为一个新的研究热点。本文拟借助于神经网络良好的逼近能力,实现永磁同步电机的无位置传感器控制。 人工神经网络(Neural Network)可以逼近任意复杂非线性映射,具有很强的自学习自适应能力,十分适合于解决复杂的非线性控制问题。其中,BP神经网络是目前广泛应用的神经网络之一,得到了较为深入的研究,其结构简单,需要离线确定的参数少、泛化能力强、逼近精度高、实时性强,采用BP神经网络实现永磁同步电机的调速控制具有重要意义。 文中提出了基于BP神经网络的永磁同步电机自适应调速控制策略,建立了一种包含辨识网络和控制网络的双神经网络结构控制系统。辨识网络在线动态辨识系统输出并对控制网络参数进行调整,控制网络与PI控制方法相结合实现永磁同步电机自适应转速控制。仿真结果表明,该系统动态响应快、实时性较强、精度较高。 文中提出了一种基于混合训练算法的BP神经网络永磁同步电机无位置传感器控制方法。采用混沌优化和梯度下降法相结合的混合算法对BP神经网络进行离线训练后,将其用于永磁同步电机的转子位置角在线估计。结果表明,该训练算法可以有效地加快神经网络收敛速度,且估计的转子位置角误差较小、精度较高。 文中建立了以TMS320F2812芯片为核心的永磁同步电机调速控制系统,并进行了相应的软硬件设计,为实现永磁同步电机的各种控制策略奠定了实验基础。DSP控制系统为神经网络训练提供样本,为研究永磁同步电机的自适应调速控制和转子位置角估计创造了条件。

    标签: BP神经网络 永磁同步电机 自适应控制

    上传时间: 2013-07-03

    上传用户:kakuki123

  • 高速永磁无刷直流电机转子涡流损耗的研究.rar

    高速电机由于转速高、体积小、功率密度高,在涡轮发电机、涡轮增压器、高速加工中心、飞轮储能、电动工具、空气压缩机、分子泵等许多领域得到了广泛的应用。永磁无刷直流电机由于效率高、气隙大、转子结构简单,因此特别适合高速运行。高速永磁无刷直流电机是目前国内外研究的热点,其主要问题在于:(1)转子机械强度和转子动力学;(2)转子损耗和温升。本文针对高速永磁无刷直流电机主要问题之一的转子涡流损耗进行了深入分析。转子涡流损耗是由定子电流的时间和空间谐波以及定子槽开口引起的气隙磁导变化所产生的。首先通过优化定子结构、槽开口和气隙长度的大小来降低电流空间谐波和气隙磁导变化所产生的转子涡流损耗;通过合理地增加绕组电感以及采用铜屏蔽环的方法来减小电流时间谐波引起的转子涡流损耗。其次对转子充磁方式和转子动力学进行了分析。最后制作了高速永磁无刷直流电机样机和控制系统,进行了空载和负载实验研究。论文主要工作包括: 一、采用解析计算和有限元仿真的方法研究了不同的定子结构、槽开口大小、以及气隙长度对高速永磁无刷直流电机转子涡流损耗的影响。对于2极3槽集中绕组、2极6槽分布叠绕组和2极6槽集中绕组的三台电机的定子结构进行了对比,利用傅里叶变换,得到了分布于定子槽开口处的等效电流片的空间谐波分量,然后采用计及转子集肤深度和涡流磁场影响的解析模型计算了转子涡流损耗,通过有限元仿真对解析计算结果加以验证。结果表明:3槽集中绕组结构的电机中含有2次、4次等偶数次空间谐波分量,该谐波分量在转子中产生大量的涡流损耗。采用有限元仿真的方法研究了槽开口和气隙长度对转子涡流损耗的影响,在空载和负载状态下的研究结果均表明:随着槽开口的增加或者气隙长度的减小,转子损耗随之增加。因此从减小高速永磁无刷电机转子涡流损耗的角度考虑,2极6槽的定子结构优于2极3槽结构。 二、高速永磁无刷直流电机额定运行时的电流波形中含有大量的时间谐波分量,其中5次和7次时间谐波分量合成的电枢磁场以6倍转子角速度相对转子旋转,11次和13次时间谐波分量合成的电枢磁场以12倍转子角速度相对转子旋转,这些谐波分量与转子异步,在转子保护环、永磁体和转轴中产生大量的涡流损耗,是转子涡流损耗的主要部分。首先研究了永磁体分块对转子涡流损耗的影响,分析表明:永磁体的分块数和透入深度有关,对于本文设计的高速永磁无刷直流电机,当永磁体分块数大于12时,永磁体分块才能有效地减小永磁体中的涡流损耗;反之,永磁体分块会使永磁体中的涡流损耗增加。为了提高转子的机械强度,在永磁体表面通常包裹一层高强度的非磁性材料如钛合金或者碳素纤维等。分析了不同电导率的包裹材料对转子涡流损耗的影响。然后利用涡流磁场的屏蔽作用,在转子保护环和永磁体之间增加一层电导率高的铜环。有限元分析表明:尽管铜环中会产生涡流损耗,但正是由于铜环良好的导电性,其产生的涡流磁场抵消了气隙磁场的谐波分量,使永磁体、转轴以及保护环中的损耗显著下降,整体上降低了转子涡流损耗。分析了不同的铜环厚度对转子涡流损耗的影响,研究表明转子各部分的涡流损耗随着铜屏蔽环厚度的增加而减小,当铜环的厚度达到6次时间谐波的透入深度时,转子损耗减小到最小。 三、对于给定的电机尺寸,设计了两台电感值不同的高速永磁无刷直流电机,通过研究表明:电感越大,电流变化越平缓,电流的谐波分量越低,转子涡流损耗越小,因此通过合理地增加绕组电感能有效的降低转子涡流损耗。 四、研究了高速永磁无刷直流电机的电磁设计和转子动力学问题。对比分析了平行充磁和径向充磁对高速永磁无刷直流电机性能的影响,结果表明:平行充磁优于径向充磁。设计并制作了两种不同结构的转子:单端式轴承支撑结构和两端式轴承支撑结构。对两种结构进行了转子动力学分析,实验研究表明:由于转子设计不合理,单端式轴承支撑结构的转子转速达到40,000rpm以上时,保护环和定子齿部发生了摩擦,破坏了转子动平衡,导致电机运行失败,而两端式轴承支撑结构的转子成功运行到100,000rpm以上。 五、最后制作了平行充磁的高速永磁无刷直流电机样机和控制系统,进行了空载和负载实验研究。对比研究了PWM电流调制和铜屏蔽环对转子损耗的影响,研究表明:铜屏蔽环能有效的降低转子涡流损耗,使转子损耗减小到不加铜屏蔽环时的1/2;斩波控制会引入高频电流谐波分量,使得转子涡流损耗增加。通过计算绕组反电势系数的方法,得到了不同控制方式下带铜屏蔽环和不带铜屏蔽环转子永磁体温度。采用简化的暂态温度场有限元模型分析了转子温升,有限元分析和实验计算结果基本吻合,验证了铜屏蔽环的有效性。

    标签: 无刷直流 电机转子 涡流损耗

    上传时间: 2013-05-18

    上传用户:zl123!@#

  • 基于灰色控制的永磁无刷直流电机调速系统研究.rar

    无刷直流电机是一种性能优越、应用前景广阔的电机,应用传统的控制理论对其进行控制系统设计、分析的技术已经相对成熟,在此基础上研发出的各种调速系统已经在工业生产中获得广泛应用。因此,无刷直流电机的进一步推广应用,在很大程度上依赖于对一些先进控制策略的研究。 为了改进无刷直流电机调速系统的控制性能,本文基于灰色控制理论建立了无刷直流电机灰色PID控制调速系统模型。常规的PID控制以其结构简单、可靠性高、易于工程实现等优点至今仍被广泛采用。在系统模型参数变化不大的情况下,PID控制性能优良,但无刷直流电机是一种多变量、非线性的控制系统,传统的PID控制器难以克服电机自身参数不确定和扰动带来的转速偏差问题,无法实现精确快速的控制。灰色控制器是在继承经典PID控制器不依赖于对象模型优点的基础上,通过改进经典PID固有缺陷而形成的新型控制器,性能优良并且算法简单。该控制器设计不需要建立电机的精确数学模型,对参数变化和负载扰动不敏感。系统较好地实现了给定速度参考模型的自适应跟踪,结构简单,能适应环境变化,具有较强的鲁棒性。 本文以灰色系统理论为基础,把无刷直流电机的数学模型分为确定部分与不确定部分,对被控对象的不确定部分建立灰色模型,进行灰色预估补偿,使控制系统的灰量得到一定程度的白化。对所提出的无刷直流电机灰色PID控制调速系统进行了仿真,对仿真结果给出理论分析;以TMS320F2812型DSP为核心控制器建立了无刷直流电机调速驱动系统。仿真和实验结果表明,基于灰色PID控制算法的无刷直流电机调速系统受电机参数变化影响较小,具有较高的控制精度和鲁棒性,表现出优良的动、静态性能。

    标签: 控制 无刷 直流电机调速

    上传时间: 2013-04-24

    上传用户:lyy1234

  • 电机传动系统参数辨识方法的研究.rar

    在早期阶段,直流调速系统在传动领域中占统治地位。然而,从60年代后期开始,交流电动机在工业应用领域正在取代直流电动机,交流传动变得越来越经济和受欢迎。永磁交流伺服系统作为电气传动领域的重要组成部分,在工业、农业、航空航天等领域发挥越来越重大的作用。永磁同步电动机以其特点广泛应用于中小功率传动场合,成为研究的重要领域。然而,永磁同步电动机具有较大的转动脉动,而对于这些应用场合,转矩平滑通常是基本要求。因此,对永磁交流伺服系统的应用,必须考虑其转矩脉动的抑制问题。本文针对电机传动系统中参数变化对电机性能的影响,以永磁同步电机为例,围绕如何通过参数辨识来提高永磁同步电动机的控制性能,借助自行开发的全数字永磁交流伺服系统平台,对永磁同步电动机的磁场定向控制,参数辨识,神经网络和扩展卡尔曼滤波在控制系统中的应用,抑制转矩脉动,提高系统性能几个方面展开深入的研究。 本文从永磁同步电动机及其控制系统的基本结构出发,对通过参数辨识抑制转矩脉动进行了较为细致的分析。针对不同情况,通过改进电机的控制系统,提出了多种参数辨识方法。主要内容如下: 1、基于定子磁链方程,建立了永磁同步电动机的一般数学模型。经坐标变换,得出在静止两相(α—β)坐标系和旋转两相(d—q)坐标系下永磁同步电动机电压方程和转矩方程。 2、分析了永磁同步电动机id=0矢量控制系统的工作原理,介绍了永磁同步电动基于磁场定向的矢量控制的基本概念。经对永磁同步电动机系统进行分析,推导并建立了id=0控制时整个电机系统的数学模型。 3、基于超稳定性理论的模型参考自适应控制原理,设计了一种模型参考自适应控制系统,考虑电机参数的时变性,对永磁交流伺服系统的绕组电阻和电机负载转矩辨识进行了研究,以保持系统的动态性能。利用Matlab/Simulink建立仿真模型,对控制性能进行了验证,仿真实验证明这种方法的可行性。 4、人工神经网络具有很强的学习性能,经过训练的多层神经网络能以任意精度逼近非线性函数,因此为非线性系统辨识提供了一个强有力的工具。本章针对永磁同步电机提出了一种以电机输出转速为目标函数的神经网络控制方案,同时应用人工神经网络理论建立和设计了负载转矩扰动辨识的算法以及相应的控制系统的补偿方法,并应用MATLAB软件进行了计算机仿真,仿真证明和传统的控制方法相比,以电机输出转速为指导值和目标函数的神经网络控制方案能有效地提高神经网络的收敛速度,能有效地改善控制系统的动态响应,具有跟踪性能好和鲁棒性较强等优点。 5、电机的参数会随着温升和磁路饱和发生变化,需进行在线实时辨识。本文利用电机的定子电流、电压和转速,采用递推最小二乘法进行在线参数辨识,该方法不需要观测的磁链信号,消除了磁链观测和参数辨识的耦合。电机状态方程由于存在状态变量的乘积项,对电机参数辨识以后,仍然是非线性方程,为了对电机状态方程进行状态估计,得到电机的参数辨识值,本文采用扩展卡尔曼滤波进行状态估计,对以上方法的仿真实验得到了满意的结果。 6、本文基于数字电机控制专用DSP自行开发了全数字永磁交流伺服系统平台,通过软件实现扩展卡尔曼滤波对电阻和磁链的估计,以及基于磁场定向的空间矢量控制算法,获得了令人满意的实验结果,证明扩展卡尔曼滤波算法对电阻和磁链的实时估计是很准确的,由此构成的永磁交流伺服系统具有良好的静、动态性能。

    标签: 电机 传动系统 参数辨识

    上传时间: 2013-07-28

    上传用户:凤临西北

  • SVPWM逆变器过调制策略对交流电机动态性能影响的研究.rar

    随着电力电子技术、微处理器技术以及控制技术的发展,基于转子磁链定向的交流电机矢量控制系统以其优良的性能受到了广泛应用。采用SVPWM逆变器的异步电动机矢量控制系统在转速参考值变化或者负载转矩参考值变化的动态情况下,参考电压矢量可能会超出基本空间矢量构成的正六边形,此时便出现动态过调制,需要用过调制策略将超出的电压矢量重新限定在正六边形边界内。不同的过调制策略会给整个系统带来不同的动态性能,本文在对过调制策略进行完善的基础上,针对三种过调制策略对交流电动机动态性能的影响进行了研究,并对其机理进行了理论分析与探讨。 @@ 本文首先以三相异步电动机在两相静止坐标系下的动态方程为基础,按照转子磁链定向,设计了转子磁链观测器,完成了励磁电流分量和转矩电流分量的解耦,并构建了基于SVPWM的异步电动机矢量控制系统的MATLAB仿真模型。在矢量控制中,电流控制对系统性能具有重要影响。为了改善系统性能,所设计的矢量控制系统采用了同步电流控制,并对反电势进行了前馈补偿。 @@ 在分析了现有的三种过调制策略之后,对过调制策略进行了完善,并构建了异步电动机矢量控制系统的过调制仿真模型。过调制中,当原参考电压矢量位于正六边形中任意两个扇区交界附近时,过调制策略2和3所得到的新电压矢量仍会超出正六边形边界,过调制算法不再适用于此区域。针对以上不足,本文对过调制策略2和3进行了完善,使过调制算法适用于所有区域。采用完善后的过调制策略对转速参考值变化和负载转矩参考值变化的异步电动机矢量控制系统进行仿真,发现在加速与加载的条件下,过调制策略2的动态性能好于过调制策略1,而过调制策略3的动态性能最佳,具有最小的动态响应时间,暂态性能优良;在减载的条件下,过调制策略1和2能够很快的进入稳定状态,但是过调制策略3却出现问题,动态响应时间很长,说明此策略具有一定的局限性。 @@ 本文深入探讨了三种过调制策略导致不同动态性能的内在机理,通过对三种过调制策略中电压矢量的幅值和相位进行分析,理论上解释了出现不同动态响应时间的原因。出现过调制时,过调制策略2中新电压矢量的幅值总是大于过调制策略1中新电压矢量的幅值,所以动态性能更好。在加速和加 载条件下,过调制策略3中新电压矢量的相位总是超前于过调制策略1和2中新电压矢量的相位,因此可以获得更快的动态响应,暂态性能更佳。但是在减载条件下,过调制策略3中新电压矢量与原电压矢量间的相位关系处于无规律的超前滞后状态,导致过调制策略3出现问题,动态响应时间很长,说明此过调制策略有其不足之处,有待于改进。@@关键词:SVPWM;矢量控制;过调制;动态性能

    标签: SVPWM 逆变器 过调制

    上传时间: 2013-06-27

    上传用户:nunnzhy

  • 大功率同步电机的软起动.rar

    同步电动机以其可调的功率因数和输出转矩对电网电压波动不敏感等良好的运行性能,在大功率电气传动领域独占螯头。同步电机虽然有很多优点,但它的最大缺点是起动困难。目前,大功率同步电机的软起动大多采用静止变频器起动方式,但由于变频器多采用晶闸管作为功率器件从而要依靠电动机产生的反电势才能自行关断并且辅助设备较多。而一旦逆变器换流失败就会导致电动机起动失败。针对晶闸管不能自行关断的缺点,本文研究了一种以IGBT做为变频器功率器件的转速开环恒压频比控制的起动方法。 @@ 首先,根据同步电动机的工作原理对同步电动机的起动特性进行了详细分析,并对全压异步起动方法进行了仿真研究,得出了起动过程中电动机相电流、电磁转矩等参数的变化曲线。针对异步起动过程中定子绕组产生过大冲击电流的问题,提出了逐级变频的转速开环恒压频比控制同步电动机软起动方法。阐述了逐级变频开环控制同步电动机软起动的原理,即通过逐级改变变频器输出频率使转子转速跟随定子旋转磁场转速逐级升高至额定值。推导出起动过程中变频器逐级变化的频率与电动机转动惯量、电磁转矩等参数的关系式。通过对一台同步电动机做工频起动和低频起动的仿真研究,证明了同步电动机在低频下依靠同步电磁转矩自行起动的可行性。通过计算转子转速达到相应同步转速的时间来确定变频器逐级升高的电压频率随时间的变化规律。然后,在采用电压型交直交变频器作为同步电机变频电源的基础上,设计了恒压频比逐级变频软起动的控制方案,利用MATLAB/SIMULINK构建了转速开环恒压频比控制同步电动机软起动的数学模型,对同步电动机的起动过程进行仿真试验,并且分别对空载起动和负载起动过程进行了分析。仿真结果验证了转速开环控制同步电动机软起动的可行性。 @@ 针对同步电动机起动后的并网问题进行了理论分析,并研究了相应的并网控制方案。应用MATLAB/SIMULINK对并网过程进行仿真试验,给出并网瞬间电网电压、同步电机相电流等参数变化曲线,从而验证了并网方案的可行性。 @@ 最后,对所做工作进行了总结,并展望了大功率同步电动机的软起动技术。 @@关键词:同步电动机;软起动;变频器;恒压频比

    标签: 大功率 同步电机 软起动

    上传时间: 2013-05-26

    上传用户:assss

  • 基于DSP的永磁同步电机伺服系统的研究.rar

    伺服系统是一种输出能够快速而精确地响应外部的输入指令信号的控制系统。伺服系统在工业控制和家用电气、航空航天等领域的应用越来越广泛。现代工业生产对伺服设备的性能也提出了越来越高的要求。因此,研制高性能、高可靠性的交流伺服系统有着十分重要的现实意义。 在伺服领域,永磁同步电机在结构特点和运行方式上具有比其它类型的传统伺服电机更为优秀的运行性能和更广泛的适用范围,被越来越多的应用到交流伺服系统。以数字信号处理技术为基础、以永磁同步电机为执行电机,采用高性能控制策略的全数字化永磁同步交流伺服控制系统必将成为伺服控制系统发展的趋势。 本论文在研究永磁同步电动机运行原理的基础上,详细讨论了磁场定向矢量控制理论,确定了id=0的控制策略和空间矢量脉宽调制(SVPWM)的电压调制方法。本文采用TI公司生产的专门用于电机控制的数字信号控制芯片DSP(TMS320LF2407A)作为控制系统核心处理芯片,设计了一套基于DSP的全数字永磁同步电动机伺服控制系统。论文详细论述了控制电路各部分及外围辅助电路的设计和调试,包括功率驱动电路,供电电路与电源电路以及传感器电路等等。软件开发均在TI的CCStudl02.2集成开发环境下完成,软件采用汇编语言编写,完成了主程序模块和子程序模块设计,实现了电流A/D采样、模型切换、转速PI调节等功能,实现了位置、速度和电流双闭环矢量控制,同时给出了主程序和各个子程序模块的流程图。 实验结果表明,基于DSP实现的全数字化交流伺服系统具有响应速度快、速度超调小、转矩脉动小等特点,具有良好的动静态特性以及较高的精度。基本达到了课题预期的效果,从而证明了系统设计的可行性。

    标签: DSP 永磁同步电机 伺服系统

    上传时间: 2013-05-18

    上传用户:bpbao2016

  • 基于卡尔曼滤波算法的永磁同步电机无速度传感器控制研究.rar

    永磁同步电机是同步电机的一个重要类型,其转子一般采用稀土永磁材料做激磁磁极,与传统同步电机相比,体积和重量大为减小,而且结构简单,运行可靠,维护更方便。现代电气传动控制的发展趋势之一是开发新的交流调速与伺服系统。无论在矢量控制还是标量控制中,转速与位置的闭环控制都需要在电机轴上安装一个速度传感器,但是由于速度传感器的引进不仅增加了成本,降低了系统可靠性,还存在安装问题,效果并不十分理想。因此高性能无速度传感器控制成为近年来电机研究的热点。 本文在系统介绍卡尔曼滤波器的基础上,将其引入到永磁同步电机无速度传感器状态观测中。由于永磁同步电机是一个强耦合的多阶非线性系统,本文采用了工程实际中普遍采用的泰勒展开式截断的方法,对电机方程线性化处理,将卡尔曼滤波算法推广至非线性系统,并加入了反映电机系统模型误差和环境干扰的系统噪声和测量噪声模型,形成扩展卡尔曼滤波算法。扩展卡尔曼滤波器将电机转子位置与转速作为系统状态变量进行实时估算,并将所得信息反馈到永磁同步电机控制系统中。通过仿真,与电机实际运行状态进行比较,证明了扩展卡尔曼滤波具有良好的动态跟踪能力和抗噪声能力。 针对扩展卡尔曼滤波算法在无速度传感器控制中存在的不足,本文给出了降阶线性卡尔曼滤波算法。降阶线性卡尔曼滤波算法重新选择了系统状态变量,建立新的完全线性化的系统方程,并且卡尔曼滤波算法中的系统协方差矩阵成为时不变序列,因此可以直接应用线性卡尔曼滤波算法。仿真结果证明,与扩展卡尔曼滤波算法相比,新的算法更加简单,减轻了繁重的参数调节任务,易于数字化实现,不仅具备扩展卡尔曼滤波算法的优势,而且在某些性能方面超越了扩展卡尔曼滤波算法。 通过分析得知,由于将系统模型不确定性与测量噪声体现在系统方程中,因此卡尔曼滤波算法在状态估算方面具有良好的性能。本文以降阶线性卡尔曼滤波 算法为理论基础,以永磁同步电机为对象,以数字信号处理器(DSP)为核心,设计了电机状态观测系统的设计方案。整个方案在不增加成本的基础上,充分利用数字信号处理器(DSP)丰富的资源和强大的运算能力,通过检测电机相电流,实时估算出电机转子位置与转速。本系统可以代替传统速度传感器,为电机控制系统提供转子位置和转速反馈信息。本文的下一步主要工作便是将此系统付诸实践,应用于实际工程中,对卡尔曼滤波算法在永磁同步电机无速度传感器控制方面的性能进行进一步研究。关键词:永磁同步电机;无速度传感器;卡尔曼滤波

    标签: 卡尔曼 滤波算法 永磁同步电机

    上传时间: 2013-04-24

    上传用户:lifangyuan12