虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

时钟源

  • 基于stm32f103c8t6单片机的RTC源码

    说明:  基于stm32f103c8t6单片机的RTC实时时钟源码,固件库为3.5版本(Based on the real-time clock source stm32f103c8t6 MCU RTC firmware library version 3.5)

    标签: stm32 单片机

    上传时间: 2022-05-16

    上传用户:得之我幸78

  • BLE芯片BK3431Q-BK3432参考源码|例程解析-PWM应用实验

    软件实现功能:pwm采用的是内部32K RC振荡器作为时钟源,输出频率为8KHZ。采用P13口输出。BK3431Q|BK3432 可替代 cc2541,nrf51822,TLSR8266,DA14580等市面主流ble芯片。

    标签: ble 芯片 bk3431q bk3432 pwm

    上传时间: 2022-08-10

    上传用户:

  • 基于FPGA的光接收机数据恢复电路

    随着信息产业的不断发展,人们对数据传输速率要求越来越高,从而对数据发送端和接收端的性能都提出了更高的要求。接收机的一个重要任务就是在于克服各种非理想因素的干扰下,从接收到的被噪声污染的数据信号中提取同步信息,并进而将数据正确的恢复出来。而数据恢复电路是光纤通信和其他许多类似数字通信领域中不可或缺的关键电路,其性能决定了接收端的总体性能。 目前,数据恢复电路的结构主要有“时钟提取”和“过采样”两种结构。基于“过采样”的数据恢复方法的关键是过采样,即通过引入参考时钟,并增加时钟源个数的方式来代替第一种方法中的“时钟提取”。与“时钟提取”的数据恢复方法相比,基于“过采样”的数据恢复方法在性能上还有较大的差距,但是后者拥有高带宽、立即锁存能力、较低的等待时间和更高的抖动容限,更易于通过数字的方法实现,实现更简单,成本更低,并且这是一种数字化的模拟技术。如果能通过“过采样”方法在普通的逻辑电路上实现622.08Mb/s甚至更高速率的数据恢复,并将它作为一个IP模块来代替专用的时钟恢复芯片,这无疑将是性能和成本的较好结合。 本文主要研究“过采样”数据恢复电路的基本原理,通过全数字的设计方法,给出了在低成本可编程器件FPGA上实现数据恢复电路两种不同的过采样的实现方案,即基于时钟延迟的过采样和基于数据延迟的过采样。基于时钟延迟的过采样数据恢复电路方案,通过测试验证,其最高恢复的数据传输率可达到640Mb/s。测试结果表明,采用该方案实现的时钟恢复电路可工作在光纤通信系统STM-4速率级,即622.08MHz频率上,各方面指标基本符合要求。

    标签: FPGA 光接收机 数据恢复 电路

    上传时间: 2013-04-24

    上传用户:axxsa

  • 常用数字逻辑功能都在CPLD器件上用VHDL语言实现

    利用一块芯片完成除时钟源、按键、扬声器和显示器(数码管)之外的所有数字电路功能。所有数字逻辑功能都在CPLD器件上用VHDL语言实现。这样设计具有体积小、设计周期短(设计过程中即可实现时序仿真)、调试方便、故障率低、修改升级容易等特点

    标签: CPLD VHDL 数字逻辑 器件

    上传时间: 2013-08-11

    上传用户:hn891122

  • 了解ADF7021的AFC环路并为实现最小前同步码长度而进行优化

    无线电通信网络中的远程收发器使用自己的独立时钟源。因此,这些收发器容易产生频率误差。当发射机启动通信链路时,关联的接收机需要在数据包的前同步码阶段校正这些误差,以确保正确的解调

    标签: 7021 ADF AFC 环路

    上传时间: 2013-10-20

    上传用户:qiaoyue

  • AVR单片机原理及应用

    《AVR单片机原理及应用》详细介绍了ATMEL公司开发的ATmega8系列高速嵌入式单片机的硬件结构、工作原理、指令系统、接口电路、C编程实例,以及一些特殊功能的应用和设计,对读者掌握和使用其他ATmega8系列的单片机具有极高的参考价值 AVR单片机原理及应用》具有较强的系统性和实用性,可作为有关工程技术人员和硬件工程师的应用手册,亦可作为高等院校自动化、计算机、仪器仪表、电子等专业的教学参考书。 目录 第1章 绪论 1.1 AVR单片机的主要特性 1.2 主流单片机系列产品比较 1.2.1 ATMEL公司的单片机 1.2.2 Mkcochip公司的单片机 1.2.3 Cygnal公司的单片机 第2章 AVR系统结构概况 2.1 AVR单片机ATmega8的总体结构 2.1.1 ATmega8特点 2.1.2 结构框图 2.1.3 ATmega8单片机封装与引脚 2.2 中央处理器 2.2.1 算术逻辑单元 2.2.2 指令执行时序 2.2.3 复位和中断处理 2.3 ATmega8存储器 2.3.1 Flash程序存储器 2.3.2 SRAM 2.3.3 E2pROM 2.3.4 I/O寄存器 2.3.5 ATmega8的锁定位、熔丝位、标识位和校正位 2.4 系统时钟及其分配 2.4.1 时钟源 2.4.2 外部晶振 2.4.3 外部低频石英晶振 2.4.4 外部:RC振荡器 2.4.5 可校准内部.RC振荡器 2.4.6 外部时钟源 2.4.7 异步定时器/计数器振荡器 2.5 系统电源管理和休眠模式 2.5.1 MCU控制寄存器 2.5.2 空闲模式 2.5.3 ADC降噪模式 2.5.4 掉电模式 2.5.5 省电模式 2.5.6 等待模式 2.5.7 最小功耗 2.6 系统复位 2.6.1 复位源 2.6.2 MCU控制状态寄存器——MCUCSR 2.6.3 内部参考电压源 2.7 I/O端口 2.7.1 通用数字I/O端口 2.7.2 数字输入使能和休眠模式 2.7.3 端口的第二功能 第3章 ATmega8指令系统 3.1 ATmega8汇编指令格式 3.1.1 汇编语言源文件 3.1.2 指令系统中使用的符号 3.1.3 ATmega8指令 3.1.4 汇编器伪指令 3.1.5 表达式 3.1.6 文件“M8def.inc” 3.2 寻址方式和寻址空间 3.3 算术和逻辑指令 3.3.1 加法指令 3.3.2 减法指令 3.3.3 取反码指令 3.3.4 取补码指令 3.3.5 比较指令 3.3.6 逻辑与指令 3.3.7 逻辑或指令 3.3.8 逻辑异或 3.3.9 乘法指令 3.4 转移指令 3.4.1 无条件转移指令 3.4.2 条件转移指令 3.4.3 子程序调用和返回指令 3.5 数据传送指令 3.5.1 直接寻址数据传送指令 3.5.2 间接寻址数据传送指令 3.5.3 从程序存储器中取数装入寄存器指令 3.5.4 写程序存储器指令 3.5.5 I/0端口数据传送 3.5.6 堆栈操作指令 3.6 位操作和位测试指令 3.6.1 带进位逻辑操作指令 3.6.2 位变量传送指令 3.6.3 位变量修改指令 3.7 MCU控制指令 3.8 指令的应用 第4章 中断系统 4.1 外部向量 4.2 外部中断 4.3 中断寄存器 第5章 自编程功能 5.1 引导加载技术 5.2 相关I/O寄存器 5.3 Flash程序存储器的自编程 5.4 Flash自编程应用 第6章 定时器/计数器 6.1 定时器/计数器预定比例分频器 6.2 8位定时器/计数器O(T/CO) 6.3 16位定时器/计数器1(T/C1) 6.3.1 T/C1的结构 6.3.2 T/C1的操作模式 6.3.3 T/121的计数时序 6.3.4 T/C1的寄存器 6.4 8位定时器/计数器2(T/C2) 6.4.1 T/C2的组成结构 6.4.2 T/C2的操作模式 6.4.3 T/C2的计数时序 6.4.4 T/02的寄存器 6.4.5 T/C2的异步操作 6.5 看门狗定时器 第7章 AVR单片机通信接口 7.1 AVR单片机串行接口 7.1.1 同步串行接口 7.1.2 通用串行接口 7.2 两线串行TWT总线接口 7.2.1 TWT模块概述 7.2.2 TWT寄存器描述 7.2.3 TWT总线的使用 7.2.4 多主机系统和仲裁 第8章 AVR单片机A/D转换及模拟比较器 8.1 A/D转换 8.1.1 A/D转换概述 8.1.2 ADC噪声抑制器 8.1.3 ADC有关的寄存器 8.2 AvR单片机模拟比较器 第9章 系统扩展技术 9.1 串行接口8位LED显示驱动器MAX7219 9.1.1 概述 9.1.2 引脚功能及内部结构 9.1.3 操作说明 9.1.4 应用 9.1.5 软件设计 9.2 AT24C系列两线串行总线E2PPOM 9.2.1 概述 9.2.2 引脚功能及内部结构 9.2.3 操作说明 9.2.4 软件设计 9.3 AT93C46——三线串行总线E2PPOM接口芯片 9.3.1 概述 9.3.2 内部结构及引脚功能 9.3.3 操作说明 9.3.4 软件设计 9.4 串行12位的ADCTL543 9.4.1 概述 9.4.2 内部结构及引脚功能 9.4.3 操作说明 9.4.4 AD620放大器介绍 9.4.5 软件设计 9.5 串行输出16位ADCMAXl95 9.5.1 概述 9.5.2 引脚功能及内部结构 9.5.3 操作说明 9.5.4 应用 9.5.5 软件设计 9.6 串行输入DACTLC5615 9.6.1 概述 9.6.2 引脚功能及内部结构 9.6.3 操作说明 9.6.4 软件设计 9.7 串行12位的DACTLC5618 9.7.1 概述 9.7.2 内部结构及引脚功能 9.7.3 操作说明 9.7.4 软件设计 9.8 串行非易失性静态RAMX24C44 9.8.1 概述 9.8.2 引脚功能及内部结构 9.8.3 操作说明 9.8.4 软件设计 9.9 数据闪速存储器AT45DB041B 9.9.1 概述 9.9.2 引脚功能及内部结构 9.9.3 操作说明 9.9.4 软件设计 9.10 GM8164串行I/0扩展芯片 9.10.1 概述 9.10.2 引脚功能说明 9.10.3 操作说明 9.10.4 软件设计 9.11 接口综合实例 附录1 ICCACR简介 附录2 ATmega8指令表 参考文献

    标签: AVR 单片机原理

    上传时间: 2013-10-29

    上传用户:lanwei

  • SH69P8XX系列单片机定时/计数器使用指南

    本使用指南介绍SH69P8XX系列单片机(SH69P801/SH69P802/SH69P822/SH69P842/SH69P862)的定时/计数器。SH69P8XX系列单片机具有2个8位定时/计数器T0,T1。T0和T1都是向上计数的自动重载入计数器,其计数的起始值可由外部来写入,计数的值可以被读出,计数溢出时能够产生中断。T0的时钟源可以是内部系统时钟(OSC/4),也可以是外部时钟,而T1的时钟源只能是内部系统时钟(OSC/4)。当对内部系统时钟的标准脉冲序列进行计数时即为定时器,对外部脉冲计数时就可作为计数器使用。当T0时钟源为外部脉冲时,可以选择脉冲的触发方式,上升沿或者下降沿。为了扩大定时或计数范围,可以设置定时器方式寄存器TM0和TM1,对定时器时钟源分频,分频比可以选择为:1:1、1:2、1:4、1:8、1:32、1:128、1:512或1:2048等。定时/计数器的内部结构见图4-1。

    标签: 69P 8XX SH 69

    上传时间: 2013-10-21

    上传用户:1477849018@qq.com

  • 深度睡眠模式操作技术笔记

    LM3S系列单片机主要有3种工作模式:运行模式(Run-Mode)、睡眠模式(Sleep-Mode)、深度睡眠模式(Deep-Sleep-Mode)。某些型号还具有单独的极为省电的冬眠模块(Hibernation Module)。而对各个模式下的外设时钟选通以及系统时钟源的控制主要由表 2.1中的寄存器来完成。 运行模式是正常的工作模式,处理器内核将积极地执行代码。在睡眠模式下,系统时钟不变,但处理器内核不再执行代码(内核因不需要时钟而省电)。在深度睡眠模式下,系统时钟可变,处理器内核同样也不再执行代码。深度睡眠模式比睡眠模式更为省电。有关这3种工作模式的具体区别请参见表 2.2的描述。调用函数SysCtlSleep( )可使处理器立即进入睡眠模式,而调用函数SysCtlDeepSleep( )可使处理器立即进入深度睡眠模式。任一中断都可以将处理器从睡眠或深度睡眠模式唤醒,并使处理器恢复到睡眠前的运行状态。因此在进入睡眠或深度睡眠之前,必须配置某个片内外设的中断并允许其在睡眠或深度睡眠模式下继续工作,如果不这样,则只有复位或重新上电才能结束睡眠或深度睡眠状态。

    标签: 深度睡眠 模式 操作

    上传时间: 2013-11-08

    上传用户:ArmKing88

  • Luminary复位电路汇总

    由于Luminary系列的ARM高速低功耗低工作电压导致其噪声容限低这是对数字电路极限的挑战对电源的纹波瞬态响应性能时钟源的稳定度电源监控可靠性等诸多方面也提出了更高的要求ARM监控技术是复杂并且非常重要的。计算机系统在上电、掉电或遇到突发状况电源电压下降情况下,都有可能因为电源的不稳定而出错。因此,就必须有一个可靠的复位系统来保证计算机系统不出错。设计复位系统时一般都采用专用的复位监控器件,这样可以大大的提高系统的复位性能。监控器件的工作原理是通过确定的复位阀值电压来启动复位操作(复位都能保持一定时间),防止CPU误操作效果,保证系统运行安全、可靠。同时还可以排除瞬间干扰的影响。Luminary的Stellaris系列单片机为低电平有效外部复位,上电复位的阀值为2.0v,掉电复位阀值的额定值为2.90v、最小值和最大值分别为2.85v和2.95v。根据这些特性及实际应用需要本文选择了适合Stellaris系列单片机的复位监控器件。

    标签: Luminary 复位电路

    上传时间: 2013-11-07

    上传用户:leesuper

  • 采用纳瓦技术的8/14引脚闪存8位CMOS单片机 PIC12

    采用纳瓦技术的8/14引脚闪存8位CMOS单片机 PIC12F635/PIC16F636/639数据手册 目录1.0 器件概述 2.0 存储器构成3.0 时钟源4.0 I/O 端口 5.0 Timer0 模块6.0 具备门控功能的Timer1 模块 7.0 比较器模块8.0 可编程低压检测(PLVD)模块9.0 数据EEPROM 存储器10.0 KeeLoq® 兼容加密模块 11.0 模拟前端(AFE)功能说明 (仅限PIC16F639)12.0 CPU 的特殊功能13.0 指令集概述14.0 开发支持15.0 电气特性16.0 DC 和AC 特性图表17.0 封装信息Microchip 网站变更通知客户服务客户支持读者反馈表 附录A: 数据手册版本历史产品标识体系全球销售及服务网点

    标签: CMOS PIC 14 12

    上传时间: 2013-11-17

    上传用户:qlpqlq