虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

故障树<b>分析法</b>

  • Fastica

    快速独立分量分析法的MATLAB源代码。

    标签: Fastica

    上传时间: 2016-11-23

    上传用户:孤星赶月

  • 12345

    /****************temic*********t5557***********************************/    #include   <at892051.h>     #include   <string.h>    #include   <intrins.h>     #include   <stdio.h>     #define    uchar    unsigned char     #define    uint     unsigned int     #define    ulong    unsigned long     //STC12C2051AD的SFR定义     sfr  WDT_CONTR = 0xe1;//stc2051的看门狗??????     /**********全局常量************/    //写卡的命令     #define    write_command0       0//写密码     #define    write_command1       1//写配置字     #define    write_command2       2//密码写数据     #define    write_command3       3//唤醒     #define    write_command4       4//停止命令     #define    TRUE       1     #define    FALSE      0     #define    OK         0     #define    ERROR      255     //读卡的时间参数us     #define ts_min          250//270*11.0592/12=249//取近似的整数     #define ts_max          304//330*11.0592/12=304     #define t1_min          73//90*11.0592/12=83:-10调整     #define t1_max          156//180*11.0592/12=166     #define t2_min          184//210*11.0592/12=194     #define t2_max          267//300*11.0592/12=276     //***********不采用中断处理:采用查询的方法读卡时关所有中断****************/     sbit p_U2270B_Standby = P3^5;//p_U2270B_Standby PIN=13     sbit p_U2270B_CFE = P3^3;//p_U2270B_CFE     PIN=6     sbit p_U2270B_OutPut = P3^7;//p_U2270B_OutPut  PIN=2     sbit wtd_sck = P1^7;//SPI总线     sbit wtd_si = P1^3;    sbit wtd_so = P1^2;    sbit iic_data = P1^2;//lcd IIC     sbit iic_clk = P1^7;    sbit led_light = P1^6;//测试绿灯     sbit led_light1 = P1^5;//测试红灯     sbit led_light_ok  = P1^1;//读卡成功标志     sbit fengmingqi = P1^5;    /***********全局变量************************************/       uchar data Nkey_a[4] = {0xA0, 0xA1, 0xA2, 0xA3};//初始密码             //uchar idata card_snr[4];   //配置字     uchar data bankdata[28] = {1,2,3,4,5,6,7,1,2,3,4,5,6,7,1,2,3,4,5,6,7,1,2,3,4,5,6,7};     //存储卡上用户数据(1-7)7*4=28     uchar data cominceptbuff[6] = {1,2,3,4,5,6};//串口接收数组ram     uchar command; //第一个命令     uchar command1;//     //uint  temp;     uchar j,i;    uchar myaddr = 8;    //uchar ywqz_count,time_count;             //ywqz jishu:     uchar bdata DATA;    sbit BIT0 = DATA^0;    sbit BIT1 = DATA^1;    sbit BIT2 = DATA^2;    sbit BIT3 = DATA^3;    sbit BIT4 = DATA^4;    sbit BIT5 = DATA^5;    sbit BIT6 = DATA^6;    sbit BIT7 = DATA^7;    uchar bdata DATA1;    sbit BIT10 = DATA1^0;    sbit BIT11 = DATA1^1;    sbit BIT12 = DATA1^2;    sbit BIT13 = DATA1^3;    sbit BIT14 = DATA1^4;    sbit BIT15 = DATA1^5;    sbit BIT16 = DATA1^6;    sbit BIT17 = DATA1^7;    bit i_CurrentLevel;//i_CurrentLevel  BIT 00H(Saves current level of OutPut pin of U2270B)     bit timer1_end;    bit read_ok = 0;    //缓存定时值,因用同一个定时器     union HLint { uint W;    struct   {    uchar H;uchar L;   }   B; };//union HLint idata a     union HLint data a;    //缓存定时值,因用同一个定时器     union HLint0 { uint W;    struct {   uchar H;   uchar L; } B; };//union HLint idata a     union HLint0 data b;    /**********************函数原型*****************/    //读写操作     void f_readcard(void);//全部读出1~7 AOR唤醒     void f_writecard(uchar x);//根据命令写不同的内容和操作     void f_clearpassword(void);//清除密码     void f_changepassword(void);//修改密码     //功能子函数     void write_password(uchar data *data p);//写初始密码或数据     void write_block(uchar x,uchar data *data p);//不能用通用指针     void write_bit(bit x);//写位     /*子函数区*****************************************************/    void delay_2(uint x)    //延时,时间x*10us@12mhz,最小20us@12mhz     {    x--; x--;    while(x)    {      _nop_();      _nop_();      x--;    }    _nop_();//WDT_CONTR=0X3C;不能频繁的复位     _nop_();    }    /////////////////////////////////////////////////////////////////////     void initial(void)    {    SCON = 0x50; //串口方式1,允许接收     //SCON  =0x50;     //01010000B:10位异步收发,波特率可变,SM2=0不用接收到有效停止位才RI=1,     //REN=1允许接收     TMOD = 0x21; //定时器1 定时方式2(8位),定时器0 定时方式1(16位)     TCON = 0x40; //设定时器1 允许开始计时(IT1=1)     TH1 = 0xfD;  //FB 18.432MHz 9600 波特率     TL1 = 0xfD;  //fd 11.0592 9600     IE = 0X90;     //EA=ES=1     TR1 = 1;     //启动定时器     WDT_CONTR = 0x3c;//使能看门狗     p_U2270B_Standby = 0;//单电源     PCON = 0x00;    IP = 0x10;//uart you xian XXXPS PT1 PX1 PT0 PX0     led_light1 = 1;    led_light = 0;    p_U2270B_OutPut = 1;    }    /************************************************/    void f_readcard()//读卡     {    EA = 0;//全关,防止影响跳变的定时器计时     WDT_CONTR = 0X3C;//喂狗     p_U2270B_CFE = 1;//      delay_2(232);  //>2.5ms            /*   //   aor    用唤醒功能来防碰撞   p_U2270B_CFE = 0; delay_2(18);//start gap>150us   write_bit(1);//10=操作码读0页   write_bit(0);       write_password(&bankdata[24]);//密码block7   p_U2270B_CFE =1 ;//    delay_2(516);//编程及确认时间5.6ms   */    WDT_CONTR = 0X3C;//喂狗     led_light = 0;    b.W = 0;    while(!(read_ok == 1))    {             //while(p_U2270B_OutPut);//等一个稳定的低电平?超时判断?              while(!p_U2270B_OutPut);//等待上升沿的到来同步信号检测1       TR0 = 1;      //deng xia jiang       while(p_U2270B_OutPut);//等待下降沿       TR0 = 0;   a.B.H = TH0;   a.B.L = TL0;   TH0 = TL0 = 0;   TR0 = 1;//定时器晚启动10个周期       //同步头       if((324 < a.W) && (a.W < 353)) ;//检测同步信号1                  else     {     TR0 = 0;     TH0 = TL0 = 0;     goto read_error;    }      //等待上升沿        while(!p_U2270B_OutPut);   TR0 = 0;   a.B.H = TH0;   a.B.L = TL0;   TH0 = TL0 = 0;   TR0 = 1;//b.N1<<=8;            if(a.B.L < 195);//0.5p       else     {     TR0 = 0;     TH0 = TL0 = 0;     goto read_error;    }      //读0~7块的数据       for(j = 0;j < 28;j++)      {       //uchar i;                  for(i = 0;i < 16;i++)//8个位        {        //等待下降沿的到来         while(p_U2270B_OutPut);                TR0 = 0;     a.B.H = TH0;     a.B.L = TL0;     TH0 = TL0 = 0;     TR0 = 1;              if(t2_max < a.W/*)&&(a.W < t2_max)*/)//1P          {         b.W >>= 2;//先左移再赋值          b.B.L += 0xc0;                             i++;        }        else if(t1_min < a.B.L/*)&&(a.B.L < t1_max)*/)//0.5p         {         b.W >>= 1;         b.B.L += 0x80;                           }        else      {      TR0 = 0;      TH0 = TL0 = 0;      goto read_error;     }        i++;        while(!p_U2270B_OutPut);//上升                   TR0 = 0;     a.B.H = TH0;     a.B.L = TL0;     TH0 = TL0 = 0;     TR0 = 1;                      if(t2_min < a.W/*)&&(a.W < t2_max)*/)//1P          {         b.W >>= 2;         i++;        }        else if(t1_min < a.B.L/*a.W)&&(a.B.L < t1_max)*/)//0.5P         //else if(!(a.W==0))         {         b.W >>= 1;         //temp+=0x00;          //led_light1=0;led_light=1;delay_2(40000);         }        else      {      TR0 = 0;      TH0 = TL0 = 0;      goto read_error;     }        i++;       }       //取出奇位        DATA = b.B.L;       BIT13 = BIT7;    BIT12 = BIT5;    BIT11 = BIT3;    BIT10 = BIT1;       DATA = b.B.H;       BIT17 = BIT7;    BIT16 = BIT5;    BIT15 = BIT3;    BIT14 = BIT1;       bankdata[j] = DATA1;      }              read_ok = 1;//读卡完成了     read_error:    _nop_();    }       }    /***************************************************/    void f_writecard(uchar x)//写卡     {    p_U2270B_CFE = 1;    delay_2(232);  //>2.5ms            //psw=0 standard write     if (x == write_command0)//写密码:初始化密码     {      uchar i;      uchar data *data p;      p = cominceptbuff;      p_U2270B_CFE = 0;   delay_2(31);//start gap>330us       write_bit(1);//写操作码1:10       write_bit(0);//写操作码0       write_bit(0);//写锁定位0       for(i = 0;i < 35;i++)      {       write_bit(1);//写数据位1       }      p_U2270B_CFE = 1;      led_light1 = 0;   led_light = 1;   delay_2(40000);//测试使用       //write_block(cominceptbuff[4],p);       p_U2270B_CFE = 1;      bankdata[20] = cominceptbuff[0];//密码存入       bankdata[21] = cominceptbuff[1];      bankdata[22] = cominceptbuff[2];      bankdata[23] = cominceptbuff[3];    }    else if (x == write_command1)//配置卡参数:初始化     {      uchar data *data p;      p = cominceptbuff;      write_bit(1);//写操作码1:10       write_bit(0);//写操作码0       write_bit(0);//写锁定位0               write_block(cominceptbuff[4],p);      p_U2270B_CFE=  1;    }    //psw=1  pssword mode     else if(x == write_command2)  //密码写数据    {      uchar data*data p;      p = &bankdata[24];      write_bit(1);//写操作码1:10       write_bit(0);//写操作码0       write_password(p);//发口令       write_bit(0);//写锁定位0       p = cominceptbuff;      write_block(cominceptbuff[4],p);//写数据            }    else if(x == write_command3)//aor    //唤醒 {      //cominceptbuff[1]操作码10 X xxxxxB       uchar data *data p;      p = cominceptbuff;      write_bit(1);//10       write_bit(0);             write_password(p);//密码       p_U2270B_CFE = 1;//此时数据不停的循环传出     }    else //停止操作码     {      write_bit(1);//11       write_bit(1);             p_U2270B_CFE = 1;         }    p_U2270B_CFE = 1;    delay_2(560);//5.6ms     }    /************************************/    void f_clearpassword()//清除密码     {    uchar data *data p;    uchar i,x;          p = &bankdata[24];//原密码     p_U2270B_CFE = 0; delay_2(18);//start gap>150us     //操作码10:10xxxxxxB     write_bit(1);    write_bit(0);              for(x = 0;x < 4;x++)//发原密码     {             DATA = *(p++);      for(i = 0;i < 8;i++)      {       write_bit(BIT0);       DATA >>= 1;      }    }    write_bit(0);//锁定位0:0     p = &cominceptbuff[0];    write_block(0x00,p);//写新配置参数:pwd=0             //密码无效:即清除密码     DATA = 0x00;//停止操作码00000000B     for(i = 0;i < 2;i++)    {    write_bit(BIT7);    DATA <<= 1;    }    p_U2270B_CFE = 1;       delay_2(560);//5.6ms     }    /*********************************/    void f_changepassword()//修改密码            {       uchar data *data p;    uchar i,x,addr;    addr = 0x07;//block7     p = &Nkey_a[0];//原密码     DATA = 0x80;//操作码10:10xxxxxxB     for(i = 0;i < 2;i++)    {      write_bit(BIT7);      DATA <<= 1;    }    for(x = 0;x < 4;x++)//发原密码     {             DATA = *(p++);      for(i = 0;i < 8;i++)      {       write_bit(BIT7);       DATA >>= 1;      }    }    write_bit(0);//锁定位0:0     p = &cominceptbuff[0];    write_block(0x07,p);//写新密码     p_U2270B_CFE = 1;    bankdata[24] = cominceptbuff[0];//密码存入     bankdata[25] = cominceptbuff[1];    bankdata[26] = cominceptbuff[2];    bankdata[27] = cominceptbuff[3];    DATA = 0x00;//停止操作码00000000B     for(i = 0;i < 2;i++)    {      write_bit(BIT7);      DATA <<= 1;    }    p_U2270B_CFE = 1;       delay_2(560);//5.6ms     }    /***************************子函数***********************************/    void write_bit(bit x)//写一位     {    if(x)    {      p_U2270B_CFE = 1;   delay_2(32);//448*11.0592/120=42延时448us       p_U2270B_CFE = 0;   delay_2(28);//280*11.0592/120=26写1     }    else    {      p_U2270B_CFE = 1;   delay_2(92);//192*11.0592/120=18       p_U2270B_CFE = 0;   delay_2(28);//280*11.0592/120=26写0     }    }    /*******************写一个block*******************/    void write_block(uchar addr,uchar data *data p)    {    uchar i,j;        for(i = 0;i < 4;i++)//block0数据     {             DATA = *(p++);      for(j = 0;j < 8;j++)      {       write_bit(BIT0);       DATA >>= 1;      }    }    DATA = addr <<= 5;//0地址     for(i = 0;i < 3;i++)    {      write_bit(BIT7);      DATA <<= 1;    }                   }    /*************************************************/    void write_password(uchar data *data p)    {    uchar i,j;        for(i = 0;i < 4;i++)//     {             DATA = *(p++);      for(j = 0;j < 8;j++)      {       write_bit(BIT0);       DATA >>= 1;      }    }        }   /*************************************************/   void main()    {    initial();    TI = RI = 0;    ES = 1;    EA = 1;  delay_2(28);   //f_readcard();     while(1) {   f_readcard();      //读卡   f_writecard(command1);  //写卡    f_clearpassword();   //清除密码     f_changepassword();    //修改密码 } }

    标签: 12345

    上传时间: 2017-10-20

    上传用户:my_lcs

  • [电路与电子技术].李晓明

    本教材电路分析基础内容有电路基本分析法、交流电路、电 路过渡过程等;模拟电子技术内容为常用半导体器件、基本放大电路、集成运放、 电源变换等;数字电子技术内容为基础知识、组合逻辑电路、时序逻辑电路、555 电路、A/D与D/A转换等;最后一章为EWB仿真技术简

    标签: 电路 电子技术

    上传时间: 2018-03-25

    上传用户:c396639174

  • 学生成绩管理

    #include<stdio.h> #include<windows.h> int xuanxiang; int studentcount; int banjihao[100]; int xueqihao[100][10]; char xm[100][100]; int xuehao[100][10]; int score[100][3]; int yuwen; int shuxue[000]; int yingyu[100]; int c[100]; int p; char x[1000][100]="",y[100][100]="";/*x学院 y专业 z班级*/  int z[100];  main() { void input(); void inputsc(); void alter(); void scbybannji(); printf("--------学生成绩管理-----\n"); printf("请按相应数字键来实现相应功能\n"); printf("1.录入学生信息   2.录入学生成绩       3.修改学生成绩\n"); printf("4.查询学生成绩   5.不及格科目及名单   6.按班级输出学生成绩单\n"); printf("请输入你要实现的功能所对应的数字:"); scanf("%d",&xuanxiang); system("cls"); getchar(); switch (xuanxiang) { case 1:input(); case 2:inputsc(); case 3:alter(); /*case 4:select score(); case 5:bujigekemujimingdan();*/ case 6:scbybanji; } } void input() { int i; printf("请输入你的学院名称:"); gets(x); printf("请输入你的专业名称:"); gets(y); printf("请输入你的班级号:"); scanf("%d",&z); printf("请输入你们一个班有几个人:"); scanf("%d",&p); system("cls"); for(i=0;i<p;i++) { printf("请输入第%d个学生的学号:",i+1); scanf("%d",xuehao[i]); getchar(); printf("请输入第%d个学生的姓名:",i+1); gets(xm[i]); system("cls"); } printf("您已经录入完毕您的班级所有学生的信息!\n"); printf("您的班级为%s%s%s\n",x,y,z); /*alter(p);*/ } void inputsc() { int i; for(i=0;i<p;i++) { printf("\n"); printf("--------------------------------------------------------------------------------\n\n"); printf("\t\t\t\t录入学生的成绩\n\n\n"); printf("--------------------------------------------------------------------------------\n\n"); printf("\t\t\t\t%s\n",xm[i]); printf("\n"); printf("\t\t\t\t数学:"); scanf("%d",&shuxue[i]); printf("\n"); getchar(); printf("\t\t\t\t英语:"); scanf("%d",&yingyu[i]); printf("\n"); getchar(); printf("\t\t\t\tc语言:"); scanf("%d",&c[i]); system("cls"); } } void alter() { int i;/*循环变量*/ int m[10000];/*要查询的学号*/ int b;/*修改后的成绩*/ char kemu[20]=""; printf("请输入你要修改的学生的学号"); scanf("%d",&m); for (i=0;i<p;i++) { if (m==xuehao[i]) { printf("%s的数学成绩为%d,英语成绩为%d,c语言成绩为%d,xm[i],shuxue[i],yingyu[i],c[i]");  printf("请输入你想修改的科目");} } gets(kemu); getchar(); if (kemu=="数学"); { scanf("%d",&b); shuxue[i]=b;} if (kemu=="英语"); { scanf("%d",&b); yingyu[i]=b;} if (kemu=="c语言"); { scanf("%d",&b); c[i]=b; } printf("%s的数学成绩为%d,英语成绩为%d,c语言成绩为%d,xm[i],shuxue[i],yingyu[i],c[i]"); } void scbybannji() { int i; char zyname[20]; int bjnumber; printf("请输入你的专业名称"); scanf("%s",&zyname); printf("请输入你的班级号"); scanf("%d",&bjnumber); for (i=0;i<p;i++) { if (zyname==y[i]); if (bjnumber==z[i]); printf("专业名称%s班级号%d数学成绩%d英语成绩%dc语言成绩%d,y[i],z[i],shuxue[i],yingyu[i],c[i]"); } }

    标签: c语言

    上传时间: 2018-06-08

    上传用户:2369043090

  • 数学建模32种常规方法

    数学建模32种常规方法1..第一章  线性规划.pdf10.第十章 数据的统计描述和分析.pdf11.第十一章 方差分析.pdf12.第十二章 回归分析.pdf13.第十三章 微分方程建模.pdf14.第十四章 稳定状态模型.pdf15.第十五章 常微分方程的解法.pdf16.第十六章 差分方程模型.pdf17.第十七章 马氏链模型.pdf18.第十八章 变分法模型.pdf19.第十九章 神经网络模型.pdf2.第二章  整数规划.pdf20.第二十章 偏微分方程的数值解.pdf21.第二十一章 目标规划.pdf22.第二十二章  模糊数学模型.pdf23.第二十三章  现代优化算法.pdf24.第二十四章   时间序列模型.pdf25.第二十五章  存贮论.pdf26.第二十六章  经济与金融中的优化问题.pdf27.第二十七章  生产与服务运作管理中的优化问题.pdf28.第二十八章  灰色系统理论及其应用.pdf29.第二十九章  多元分析.pdf3.第三章  非线性规划.pdf30.第三十章  偏最小二乘回归.pdf31、支持向量机(数学建模).pdf32、作业计划(数学建模).pdf4.第四章  动态规划.pdf5.第五章  图与网络.pdf6.第六章 排队论.pdf7.第七章 对策论.pdf8.第八章  层次分析法.pdf9.第九章 插值与拟合.pdf前言.pdf灰色预测公式的理论缺陷及改进.pdf

    标签: 数学建模

    上传时间: 2021-10-20

    上传用户:kingwide

  • 基于LLC谐振电路的高效率ACDC变换技术研究阻抗特性

    随着电力电子技术的飞速发展,高频开关电源由于其诸多优点已经广泛深入到国防、工业、民用等各个领域,与人们的工作、生活密切相关,由此引发的电网谐波污染也越来越受到人们的重视,对其性能,体积,效率,功率密度等的要求也越来越高。因此,研究具有高功率因数、高效率的ACDC变换技术,对于抑制谐波污染、节钓能源及实现绿色电能变换具有重要意义通过分析目前功率因数校正PFC)技术与直流变换(DcDC)技术的研究现状,采用了具有两级结构的AcDc变换技术,对PFC控制技术,直流变换软开关实现等内容进行了研究。前级PFC部分采用先进的单周期控制技术,通过对其应用原理、稳定性与优势性能的研究,实璄了主电路及控电路的参数设计与优化,简化了PFC控制电路结构、根据控制电路特点与系統环路稳性要求,完成了电流环路与整个控制环路设计,确保了系统稳定性,提高了系统动态响应。通过建立电路闭环仿真模型,验证了单周期控制抑制输入电压与负载扰动的优势性能及连续功率因数校正的优点,优化了电路参数后级直流变换主电路采用LLC谐振拓扑,通过变频控制使直流变换环节具有轼开关特性。分析了不同开关频率范围内电路工作原理,并建立了基波等效电路,采用基波分析法对VLc需城电路的电反增益性,输入阻抗持性进行了研究,确定了电路软开关工作范图。以基波分析结果为基础进行了合理的电路参数优化设计,保证了直流变换环节在全输入电压范围、全负载范围内能实现桥臂开关管零电压开通zVS},较大范围内边整流二极管零电流关断区CS),并将谐振电路中的电压电流应力降到最小,极大的提高了系统效率同时,为了提高系统功率密度,选择了优化的磁性元器件结构,实现了谐振感性元件与变压器的磁性器件集成,大大减小了变换电路的体积在理论研究与参数设计的基础上,搭建了实验样机,分别对PFC部分和DcDC部分进行了实验验证与结果分析。经实验验证ACDc变换电路功率因数在0.988以上,直瓿变换电路能实现全范图软开关,实现了高效率AcDC变换。关键词:ACDC变换:功率因数校正:;高效率;LLC谐振电路:单周期控制

    标签: llc 谐振电路

    上传时间: 2022-03-24

    上传用户:

  • 东元TSDA伺服手册

    安装塌所1、通凰良好少温策及灰座之塌所。2、杂腐蚀性、引火性氛髓、油急、切削液、切前粉、戴粉等聚境。3、杂振勤的场所。4、杂水氟及踢光直射的场所。1、本距勤器探用自然封流冷御方式正随安装方向局垂直站立方式2、在配電箱中需考感温升情况未连有效散熟及冷御效果需保留足豹的空固以取得充分的空氟。3、如想要使控制箱内温度连到一致需增加凰扇等散热毅倩。4、组装睛廊注意避免赞孔屑及其他翼物掉落距勤器内。5、安装睛请硫资以M5螺练固定。6、附近有振勤源时请使用振勤吸收器防振橡腥来作腐噩勤器的防振支撑。7、勤器附近有大型磁性阴嗣、熔接楼等雄部干援源睛,容易使距勤器受外界干摄造成误勤作,此时需加装雄部滤波器。但雍讯滤波器舍增加波漏電流,因此需在愿勤器的输入端装上经缘羹愿器(Transformer)。*配象材料依照使用電象规格]使用。*配象的丧度:指令输入象3公尺以内。编码器输入综20公尺以内。配象时请以最短距薄速接。*硫赏依照操单接象圈配象,未使用到的信貌请勿接出。*局连输出端(端子U、V、W)要正硫的速接。否则伺服焉速勤作舍不正常。*隔雄综必须速接在FG端子上。*接地请以使用第3砸接地(接地電阻值腐100Ω以下),而且必须罩黏接地。若希望易速舆械之周腐纪缘状惩畸,请将连接地。*伺服距勤器的输出端不要加装電容器,或遇(突波)吸收器及雅讯滤波器。*装在控制输出信號的DC继電器,其遏(突波)吸收用的二梗溜的方向要速接正硫,否则食造成故障,因而杂法输出信犹,也可能影馨紧急停止的保渡迎路不座生作用。*腐了防止雍部造成的错溪勤作,请探下列的威置:请在電源上加入经缘雯愿器及雅乱滤波器等装置。请将勤力缘(雷源象、焉连缘等的蕴雷回路)奥信蔬缘相距30公分以上来配练,不要放置在同一配缘管内。

    标签: tsda

    上传时间: 2022-05-28

    上传用户:zhanglei193

  • 汪建电路原理答案解析及学习指导

    本书配套汪建的《电路原理》使用。《电路原理教程》是汪建、汪泉编著,2017年清华大学出版社出版的教育部高等学校电子信息类专业教学指导委员会规划教材、高等学校电子信息类专业系列教材、国家电工电子教学基础教材、湖北省精品课程教材。该教材可作为高等院校电气、电子信息类专业“电路理论”课程的教材,也可供有关科技人员参考。该教材介绍了电路的基本原理和基本分析方法。全书共13章,主要内容包括:电路的基本定律和电路元件,电路分析方法——等效变换法、电路方程法、运用电路定理法,含运算放大器的电阻电路,动态元件,正弦稳态分析,谐振电路与互感耦合电路,三相电路,非正弦周期性稳态电路分析,双口网络,暂态分析方法——经典分析法、复频域分析法。该教材从培养学生分析、解决电路问题的能力出发,通过对电路原理课程中重点、难点及解题方法的论述,将基本内容的叙述和学习方法的指导融合。强调对基本概念的准确理解。对重点、难点内容用注释方式予以较详尽的说明和讨论;对在理解和掌握上易出错之处给予必要的提示;重视对基本分析方法的训练和掌握。对各种解题方法给出了具体步骤,并用实例说明这些解题方法的具体应用,且许多例题同时给出多种解法供读者比较;注意培养学生独立思考、善于灵活运用基本概念和方法分析解决各种电路问题的能力;通过对一些典型的或综合性较强且有一定难度的例题的讲解,进一步讨论各种电路分析方法的灵活应用。

    标签: 电路原理

    上传时间: 2022-06-04

    上传用户:kingwide

  • 电路原理 汪建 下册

    《电路原理教程》是汪建、汪泉编著,2017年清华大学出版社出版的教育部高等学校电子信息类专业教学指导委员会规划教材、高等学校电子信息类专业系列教材、国家电工电子教学基础教材、湖北省精品课程教材。该教材可作为高等院校电气、电子信息类专业“电路理论”课程的教材,也可供有关科技人员参考。该教材介绍了电路的基本原理和基本分析方法。全书共13章,主要内容包括:电路的基本定律和电路元件,电路分析方法——等效变换法、电路方程法、运用电路定理法,含运算放大器的电阻电路,动态元件,正弦稳态分析,谐振电路与互感耦合电路,三相电路,非正弦周期性稳态电路分析,双口网络,暂态分析方法——经典分析法、复频域分析法。该教材从培养学生分析、解决电路问题的能力出发,通过对电路原理课程中重点、难点及解题方法的论述,将基本内容的叙述和学习方法的指导融合。强调对基本概念的准确理解。对重点、难点内容用注释方式予以较详尽的说明和讨论;对在理解和掌握上易出错之处给予必要的提示;重视对基本分析方法的训练和掌握。对各种解题方法给出了具体步骤,并用实例说明这些解题方法的具体应用,且许多例题同时给出多种解法供读者比较;注意培养学生独立思考、善于灵活运用基本概念和方法分析解决各种电路问题的能力;通过对一些典型的或综合性较强且有一定难度的例题的讲解,进一步讨论各种电路分析方法的灵活应用。

    标签: 电路原理

    上传时间: 2022-06-04

    上传用户:默默

  • 基于ADS的射频功率放大器设计与仿真

    论文主要工作如下:一是从功率放大器的物理结构上分析了射频功率放大器非线性特性产生的原因及其对通信系统的影响,讨论了功率放大器的非线性分析模型,即幂级数分析模型,Volterra级数分析模型和谐波平衡分析模型,并简要的说明了它们各自的特点,总结出了谐波平衡分析法的优点,指出它适合用于射频功率放大器的大信号非线性分析.二是分析了射频功率放大器偏置和匹配电路设计中的一些基本问题,比较了有源和无源偏置网络的优缺点,讨论了输入、输出匹配电路和级间匹配电路设计的重点问题。介绍了负载牵引设计方法,它是在具备功率管大信号模型的基础上对负载和源进行牵引仿真,从而确定输出、输入阻抗。三是在射频功率放大器的设计过程中,主要使用了ADS软件进行辅助分析设计.正是通过对软件功能的充分应用,替代了射频功半放大器设计中许多原来需要人工进行的运算工作,提高了工作效率。从仿真结果来看,都达到了预期的设计目标,验证说明了ADS仿真软件在射频功率放大电路设计方面的实用性与优越性,具有继续进行深入研究的价值。

    标签: ads 射频 功率放大器

    上传时间: 2022-06-20

    上传用户: