linux 中断和设备驱动 本章介绍L i n u x内核是如何维护它支持的文件系统中的文件的,我们先介绍 V F S ( Vi r t u a lFile System,虚拟文件系统),再解释一下L i n u x内核的真实文件系统是如何得到支持的。L i n u x的一个最重要特点就是它支持许多不同的文件系统。这使 L i n u x非常灵活,能够与许多其他的操作系统共存。在写这本书的时候, L i n u x共支持1 5种文件系统: e x t、 e x t 2、x i a、 m i n i x、 u m s d o s、 msdos 、v f a t、 p r o c、 s m b、 n c p、 i s o 9 6 6 0、 s y s v、 h p f s、 a ffs 和u f s。无疑随着时间的推移,L i n u x支持的文件系统数还会增加。
上传时间: 2013-11-13
上传用户:zxh122
假近邻法(False Nearest Neighbor, FNN)计算嵌入维的Matlab程序 文件夹说明: Main_FNN.m - 程序主函数,直接运行此文件即可 LorenzData.dll - 产生Lorenz时间序列 PhaSpaRecon.m - 相空间重构 fnn_luzhenbo.dll - 假近邻计算主函数 SearchNN.dll - 近邻点搜索 buffer_SearchNN_1.dll - 近邻点搜索缓存1 buffer_SearchNN_2.dll - 近邻点搜索缓存2 参考文献: M.B.Kennel, R.Brown, H.D.I.Abarbanel. Determining embedding dimension for phase-space reconstruction using a geometrical construction[J]. Phys. Rev. A 1992,45:3403.
标签: Main_FNN Neighbor Nearest Matlab
上传时间: 2013-12-10
上传用户:songnanhua
(1) 、用下述两条具体规则和规则形式实现.设大写字母表示魔王语言的词汇 小写字母表示人的语言词汇 希腊字母表示可以用大写字母或小写字母代换的变量.魔王语言可含人的词汇. (2) 、B→tAdA A→sae (3) 、将魔王语言B(ehnxgz)B解释成人的语言.每个字母对应下列的语言.
上传时间: 2013-12-30
上传用户:ayfeixiao
1.有三根杆子A,B,C。A杆上有若干碟子 2.每次移动一块碟子,小的只能叠在大的上面 3.把所有碟子从A杆全部移到C杆上 经过研究发现,汉诺塔的破解很简单,就是按照移动规则向一个方向移动金片: 如3阶汉诺塔的移动:A→C,A→B,C→B,A→C,B→A,B→C,A→C 此外,汉诺塔问题也是程序设计中的经典递归问题
上传时间: 2016-07-25
上传用户:gxrui1991
1. 下列说法正确的是 ( ) A. Java语言不区分大小写 B. Java程序以类为基本单位 C. JVM为Java虚拟机JVM的英文缩写 D. 运行Java程序需要先安装JDK 2. 下列说法中错误的是 ( ) A. Java语言是编译执行的 B. Java中使用了多进程技术 C. Java的单行注视以//开头 D. Java语言具有很高的安全性 3. 下面不属于Java语言特点的一项是( ) A. 安全性 B. 分布式 C. 移植性 D. 编译执行 4. 下列语句中,正确的项是 ( ) A . int $e,a,b=10 B. char c,d=’a’ C. float e=0.0d D. double c=0.0f
上传时间: 2017-01-04
上传用户:netwolf
将魔王的语言抽象为人类的语言:魔王语言由以下两种规则由人的语言逐步抽象上去的:α-〉β1β2β3…βm ;θδ1δ2…-〉θδnθδn-1…θδ1 设大写字母表示魔王的语言,小写字母表示人的语言B-〉tAdA,A-〉sae,eg:B(ehnxgz)B解释为tsaedsaeezegexenehetsaedsae对应的话是:“天上一只鹅地上一只鹅鹅追鹅赶鹅下鹅蛋鹅恨鹅天上一只鹅地上一只鹅”。(t-天d-地s-上a-一只e-鹅z-追g-赶x-下n-蛋h-恨)
上传时间: 2013-12-19
上传用户:aix008
【问题描述】 在一个N*N的点阵中,如N=4,你现在站在(1,1),出口在(4,4)。你可以通过上、下、左、右四种移动方法,在迷宫内行走,但是同一个位置不可以访问两次,亦不可以越界。表格最上面的一行加黑数字A[1..4]分别表示迷宫第I列中需要访问并仅可以访问的格子数。右边一行加下划线数字B[1..4]则表示迷宫第I行需要访问并仅可以访问的格子数。如图中带括号红色数字就是一条符合条件的路线。 给定N,A[1..N] B[1..N]。输出一条符合条件的路线,若无解,输出NO ANSWER。(使用U,D,L,R分别表示上、下、左、右。) 2 2 1 2 (4,4) 1 (2,3) (3,3) (4,3) 3 (1,2) (2,2) 2 (1,1) 1 【输入格式】 第一行是数m (n < 6 )。第二行有n个数,表示a[1]..a[n]。第三行有n个数,表示b[1]..b[n]。 【输出格式】 仅有一行。若有解则输出一条可行路线,否则输出“NO ANSWER”。
标签: 点阵
上传时间: 2014-06-21
上传用户:llandlu
#include "iostream" using namespace std; class Matrix { private: double** A; //矩阵A double *b; //向量b public: int size; Matrix(int ); ~Matrix(); friend double* Dooli(Matrix& ); void Input(); void Disp(); }; Matrix::Matrix(int x) { size=x; //为向量b分配空间并初始化为0 b=new double [x]; for(int j=0;j<x;j++) b[j]=0; //为向量A分配空间并初始化为0 A=new double* [x]; for(int i=0;i<x;i++) A[i]=new double [x]; for(int m=0;m<x;m++) for(int n=0;n<x;n++) A[m][n]=0; } Matrix::~Matrix() { cout<<"正在析构中~~~~"<<endl; delete b; for(int i=0;i<size;i++) delete A[i]; delete A; } void Matrix::Disp() { for(int i=0;i<size;i++) { for(int j=0;j<size;j++) cout<<A[i][j]<<" "; cout<<endl; } } void Matrix::Input() { cout<<"请输入A:"<<endl; for(int i=0;i<size;i++) for(int j=0;j<size;j++){ cout<<"第"<<i+1<<"行"<<"第"<<j+1<<"列:"<<endl; cin>>A[i][j]; } cout<<"请输入b:"<<endl; for(int j=0;j<size;j++){ cout<<"第"<<j+1<<"个:"<<endl; cin>>b[j]; } } double* Dooli(Matrix& A) { double *Xn=new double [A.size]; Matrix L(A.size),U(A.size); //分别求得U,L的第一行与第一列 for(int i=0;i<A.size;i++) U.A[0][i]=A.A[0][i]; for(int j=1;j<A.size;j++) L.A[j][0]=A.A[j][0]/U.A[0][0]; //分别求得U,L的第r行,第r列 double temp1=0,temp2=0; for(int r=1;r<A.size;r++){ //U for(int i=r;i<A.size;i++){ for(int k=0;k<r-1;k++) temp1=temp1+L.A[r][k]*U.A[k][i]; U.A[r][i]=A.A[r][i]-temp1; } //L for(int i=r+1;i<A.size;i++){ for(int k=0;k<r-1;k++) temp2=temp2+L.A[i][k]*U.A[k][r]; L.A[i][r]=(A.A[i][r]-temp2)/U.A[r][r]; } } cout<<"计算U得:"<<endl; U.Disp(); cout<<"计算L的:"<<endl; L.Disp(); double *Y=new double [A.size]; Y[0]=A.b[0]; for(int i=1;i<A.size;i++ ){ double temp3=0; for(int k=0;k<i-1;k++) temp3=temp3+L.A[i][k]*Y[k]; Y[i]=A.b[i]-temp3; } Xn[A.size-1]=Y[A.size-1]/U.A[A.size-1][A.size-1]; for(int i=A.size-1;i>=0;i--){ double temp4=0; for(int k=i+1;k<A.size;k++) temp4=temp4+U.A[i][k]*Xn[k]; Xn[i]=(Y[i]-temp4)/U.A[i][i]; } return Xn; } int main() { Matrix B(4); B.Input(); double *X; X=Dooli(B); cout<<"~~~~解得:"<<endl; for(int i=0;i<B.size;i++) cout<<"X["<<i<<"]:"<<X[i]<<" "; cout<<endl<<"呵呵呵呵呵"; return 0; }
标签: 道理特分解法
上传时间: 2018-05-20
上传用户:Aa123456789
RSA算法 :首先, 找出三个数, p, q, r, 其中 p, q 是两个相异的质数, r 是与 (p-1)(q-1) 互质的数...... p, q, r 这三个数便是 person_key,接著, 找出 m, 使得 r^m == 1 mod (p-1)(q-1)..... 这个 m 一定存在, 因为 r 与 (p-1)(q-1) 互质, 用辗转相除法就可以得到了..... 再来, 计算 n = pq....... m, n 这两个数便是 public_key ,编码过程是, 若资料为 a, 将其看成是一个大整数, 假设 a < n.... 如果 a >= n 的话, 就将 a 表成 s 进位 (s
标签: person_key RSA 算法
上传时间: 2013-12-14
上传用户:zhuyibin
上下文无关文法(Context-Free Grammar, CFG)是一个4元组G=(V, T, S, P),其中,V和T是不相交的有限集,S∈V,P是一组有限的产生式规则集,形如A→α,其中A∈V,且α∈(V∪T)*。V的元素称为非终结符,T的元素称为终结符,S是一个特殊的非终结符,称为文法开始符。 设G=(V, T, S, P)是一个CFG,则G产生的语言是所有可由G产生的字符串组成的集合,即L(G)={x∈T* | Sx}。一个语言L是上下文无关语言(Context-Free Language, CFL),当且仅当存在一个CFG G,使得L=L(G)。 *⇒ 例如,设文法G:S→AB A→aA|a B→bB|b 则L(G)={a^nb^m | n,m>=1} 其中非终结符都是大写字母,开始符都是S,终结符都是小写字母。
标签: Context-Free Grammar CFG
上传时间: 2013-12-10
上传用户:gaojiao1999