该文档为深度学习在轨迹数据挖掘中的应用研究综述概述资料,讲解的还不错,感兴趣的可以下载看看…………………………
上传时间: 2021-10-16
上传用户:XuVshu
这是我在做大学教授期间推荐给我学生的一本书,非常好,适合入门学习。《python深度学习》由Keras之父、现任Google人工智能研究员的弗朗索瓦•肖莱(François Chollet)执笔,详尽介绍了用Python和Keras进行深度学习的探索实践,包括计算机视觉、自然语言处理、产生式模型等应用。书中包含30多个代码示例,步骤讲解详细透彻。作者在github公布了代码,代码几乎囊括了本书所有知识点。在学习完本书后,读者将具备搭建自己的深度学习环境、建立图像识别模型、生成图像和文字等能力。但是有一个小小的遗憾:代码的解释和注释是全英文的,即使英文水平较好的朋友看起来也很吃力。本人认为,这本书和代码是初学者入门深度学习及Keras最好的工具。作者在github公布了代码,本人参照书本,对全部代码做了中文解释和注释,并下载了代码所需要的一些数据集(尤其是“猫狗大战”数据集),并对其中一些图像进行了本地化,代码全部测试通过。(请按照文件顺序运行,代码前后有部分关联)。以下代码包含了全书约80%左右的知识点,代码目录:2.1: A first look at a neural network( 初识神经网络)3.5: Classifying movie reviews(电影评论分类:二分类问题)3.6: Classifying newswires(新闻分类:多分类问题 )3.7: Predicting house prices(预测房价:回归问题)4.4: Underfitting and overfitting( 过拟合与欠拟合)5.1: Introduction to convnets(卷积神经网络简介)5.2: Using convnets with small datasets(在小型数据集上从头开始训练一个卷积网络)5.3: Using a pre-trained convnet(使用预训练的卷积神经网络)5.4: Visualizing what convnets learn(卷积神经网络的可视化)
上传时间: 2022-01-30
上传用户:
MATLAB深度学习简介深度学习是机器学习的一个类型,该类型的模型直接从图像、文本或声音中学 习执行分类任务。通常使用神经网络架构实现深度学习。“深度”一词是指网络 中的层数 — 层数越多,网络越深。传统的神经网络只包含 2 层或 3 层, 而深度网络可能有几百层。下面只是深度学习发挥作用的几个例子:• 无人驾驶汽车在接近人行横道线时减速。• ATM 拒收假钞。• 智能手机应用程序即时翻译国外路标。深度学习特别适合鉴别应用场景,比如人脸辨识、 文本翻译、语音识别以及高级驾驶辅助系统(包括 车道分类和交通标志识别)。简言之,精确。先进的工具和技术极大改进了深度学习算法,达到了 很高的水平,在图像分类上能够超越人类,能打败世界最优秀的围棋 选手,还能实现语音控制助理功能,如 Amazon Echo® 和 Google Home,可用来查找和下载您喜欢的新歌。如果您刚接触深度学习,快速而轻松的入门方法是使用现有网络, 比如 AlexNet,用一百多万张图像训练好的 CNN。AlexNet 最常用于 图像分类。它可将图像划分为 1000 个不同的类别,包括键盘、鼠标、 铅笔和其他办公设备,以及各个品种的狗、猫、马和其他动物。
标签: Matlab
上传时间: 2022-06-10
上传用户:
学python必备,数学得搞好 ,嘿嘿嘿本书的目的在于提供理解神经网络所需的数学基础知识。为了便于 读者直观地理解,书中使用大量图片,并通过具体示例来介绍。因 此,本书将数学的严谨性放在第二位。 深度学习的世界是丰富多彩的,本书主要考虑阶层型神经网络和卷 积神经网络在图像识别中的应用。 本书将 Sigmoid 函数作为激活函数,除此之外也可以考虑其他函 数。 本书以最小二乘法作为数学上的最优化的基础,除此之外也可以考 虑其他方法。 神经网络可分为有监督学习和无监督学习两类。本书主要讲解有监 督学习。 人工智能相关的文献之所以难读,其中一个原因就是各文献所用的 符号不统一。本书采用的是相关文献中常用的符号。 本书使用 Excel 进行理论验证。Excel 是一个非常优秀的工具,能 够在工作表上可视化地展现逻辑,有助于我们理解。因此,相应的 项目需要以 Excel 的基础知识为前提。
上传时间: 2022-06-22
上传用户:kingwide
解析深度学习:语音识别实践》是首部介绍语音识别中深度学习技术细节的专著。全书首先概要介绍了传统语音识别理论和经典的深度神经网络核心算法。接着全面而深入地介绍了深度学习在语音识别中的应用,包括“深度神经网络-隐马尔可夫混合模型”的训练和优化,特征表示学习、模型融合、自适应,以及以循环神经网络为代表的若干先进深度学习技术。
上传时间: 2022-07-24
上传用户:qdxqdxqdxqdx
该书的作者是来自 Y Combinator Research 的研究员 Michael Nielsen,他也是一位量子物理学家、科学作家、计算机编程研究人员。他的个人主页是:Neural networks and deep learningneuralnetworksanddeeplearning.com书籍介绍 这是我个人以为目前最好的神经网络与机器学习入门资料之一。内容非常浅显易懂,很多数学密集的区域作者都有提示。全书贯穿的是 MNIST 手写数字的识别问题,每个模型和改进都有详细注释的代码。非常适合用来入门神经网络和深度学习! 全书共分为六章,目录如下: 第一章:使用神经网络识别手写数字 第二章:反向传播算法如何工作 第三章:改进神经网络的学习方法 第四章:神经网络可以计算任何函数的可视化证明 第五章:深度神经网络为何很难训练 第六章:深度学习 《Neural Network and Deep Learning》这本书的目的是帮助读者掌握神经网络的核心概念,包括现代技术的深度学习。在完成这本书的学习之后,你将使用神经网络和深度学习来解决复杂模式识别问题。你将为使用神经网络和深度学习打下基础,来攻坚你自己设计中碰到的问题。 本书一个坚定的信念,是让读者更好地去深刻理解神经网络和深度学习,如果你很好理解了核心理念,你就可以很快地理解其他新的推论。这就意味着这本书的重点不是作为一个如何使用一些特定神经网络库的教程。仅仅学会如何使用库,虽然这也许能很快解决你的问题,但是,如果你想理解神经网络中究竟发生了什么,如果你想要了解今后几年都不会过时的原理,那么只是学习些热?的程序库是不够的。你需要领悟让神经网络工作的原理。
标签: 深度学习
上传时间: 2022-07-24
上传用户:
·详细说明:NeHe的OpenGL教程(中英文版),介绍了有关OpenGL的入门知识,适合初学者。
上传时间: 2013-05-27
上传用户:维子哥哥
fpga学习中常用的缩略语
上传时间: 2013-09-07
上传用户:英雄
JAVA语言课程学习中的一个程序
上传时间: 2014-01-07
上传用户:1109003457
fpga学习中常用的缩略语
上传时间: 2015-03-09
上传用户:zsjzc